
Logic for Timed Agent Network Topologies

Clovis Eberhart1,2, James Haydon1, Jérémy Dubut1,2, Ahmet Cetinkaya1, and Sasinee Pruekprasert1

Abstract— We define µTGL, a spatio-temporal logic with
fixed points and first-order agent quantification whose expres-
sive power allows the definition of topological properties of
networks of communicating agents. The existence of temporal
operators and fixed points requires particular care when
defining its semantics. We also give a streaming monitoring
algorithm for µTGL formulas. Finally, we demonstrate the
logic’s usefulness on an example, where we monitor a complex
property that ensures resilient consensus.

I. INTRODUCTION

With more multi-agent systems being used in practice, the
need to study topological properties of automated multi-agent
networks has come to light. The key challenge in study-
ing multi-agent networks arises from complex interactions
among the agents, especially when many agents are involved.
Efficiently describing desired properties for such systems is
a non-trivial task that requires mathematical formalism.

Temporal logics, which can express system properties
dependent on time, have been proved useful for monitoring
specifications. In particular, Linear Temporal Logic (LTL)
and Signal Temporal Logic (STL) have been extensively used
to monitor cyber-physical systems [1]. However, those logics
are not meant to model spatial relations between agents,
which are crucial to monitoring some interesting properties.
For instance, the distances between the different agents can
influence the overall behaviour of the network.

Several previous studies proposed extensions of well-
known temporal logics to model spatio-temporal behaviours
of multi-agent systems. Signal Spatio-Temporal Logic
(SSTL) [2], [3] extends STL with spatial modalities, and
imposes bounds on spatial and temporal operators. Spatial-
Temporal Logic (SpaTeL) [4] extends STL with spatial
component based on Tree Spatial Superposition Logic [5],
resulting in a logic suitable for robotic swarm control [6].
Counting linear temporal logic (cLTL) [7] can specify de-
sired behaviours for multi-robot systems with constraints on
the number of agents satisfying given LTL properties. To
specify topological properties of networks, we also need a
fixed-point operator (such as that from the µ-calculus [8]),
which none of these logics have.

The authors are supported by ERATO HASUO Metamathematics for
Systems Design Project (No. JPMJER1603), JST. J. D. is also supported by
Grant-in-aid No. 19K20215, JSPS. A. C. is also supported by Grant-in-aid
No. 20K14771, JSPS. S. P. is also supported by Grant-in-aid No. 21K14191,
JSPS.

1The authors are with the National Institute of Informatics, Hitotsubashi
2-1-2, Tokyo 101-8430, Japan {eberhart, jhaydon, dubut,
cetinkaya, sasinee}@nii.ac.jp.

2C. E. and J. D. are also affiliated with the Japanese-French Laboratory
for Informatics, IRL 3527.

This paper proposes a new logic µTGL (Temporal Graph
Logic with fixed points). It has several features needed to
express interesting properties of communicating agent net-
works. It has temporal operators, as well as a “connectivity”
operator that has a strong spatial flavour. It also contains first-
order agent quantification, which is necessary to express the
properties of agent networks with an unknown number of
agents. Finally, our logic contains fixed points, which allows
the definition of recursive properties that cannot be expressed
by spatio-temporal logics proposed in the previous studies.
Using these constructs, we can express properties such as
the connectivity of the communication graph of the network
or the existence of communication chains between agents.

The presence of fixed points and temporal operators in the
logic implies that we may need to look at an infinite portion
of the agents’ trajectories to be able to decide whether a
property is satisfied or not. This leads us to come up with
a novel semantics that takes into account how much of the
signal we are allowed to see. This semantics allows us to
define a streaming monitoring algorithm for µTGL.

Our logic draws inspiration from many other logics. The
temporal part is inherited from continuous-time temporal
logics such as Metric Temporal Logic (MTL) [9], Metric
Interval Temporal Logic (MITL) [10], and STL [11]. The
diamond modality is inspired by spatial operators from
spatio-temporal logics [2], [3]. The fixed point operator is
inspired from fixed-point logics, and in particular the µ-
calculus [8]. Since µTGL features a diamond modality cor-
responding to connectivity of agents, our logic is also related
to temporal graph logics [12]. However, such logics describe
graph rewriting properties rather than agent networks, so they
are quite different in practice. Moreover, our semantics uses
three-valued logic [13], more precisely, Kleene’s logic of
indeterminacy. It enables us to handle indeterminacy in the
monitoring algorithm that we propose.

The rest of the paper is structured as follows. In Section II,
we define the syntax and semantics of µTGL, give examples
of especially useful formulas, and describe a monitoring
algorithm for it. In Section III, we give several examples
of formulas that showcase the expressivity of µTGL. In
Section IV, we give a monitoring algorithm for µTGL
formulas. In Section V, we design a µTGL formula that
describes a property that ensures resilient consensus in an
agent network, and apply our monitoring algorithm on a
specific scenario of mobile robots surveilling a perimeter.

Notations: We denote by N the set of natural numbers,
by R, R≥0, R, R≥0 the sets of real numbers, non-negative real
numbers, and their extensions with ±∞ and +∞ respectively.
We denote by 2 the set {⊺,�} of booleans. We denote by



3 the set of booleans augmented with an indeterminate ⊺�,
and equipped with the order � < ⊺� < ⊺. It is equipped
with the usual functions on 2: ∨ and ∧ are respectively min
and max, and negation maps ⊺� to ⊺�. Uncertain sets are
functions X → 3. They are equipped with the same order
and operations as 3, defined pointwise. We sometimes use
set notation {x ∈X ∣ φ(x)} to denote an uncertain set, by
which we mean that no element is mapped to ⊺�.

II. µTGL

In this section, we define µTGL, its syntax and seman-
tics, give examples of its uses, and describe a monitoring
algorithm for it.

We denote by A the set of agents, which we assume finite.
Agents move in a metric space (M,d) – usually Rn equipped
with the Euclidean distance.

A. Syntax

We start by defining the syntax of µTGL, that is the set
of µTGL formulas. From now on, we assume given sets
X of fixed-point variables and A of agent variables, both
infinite countable. We also fix a set P of predicates on M ,
i.e. functions from M to 2.

Definition 1 (Agent formulas). Agent formulas are given by
the following grammar:

φ ∶∶= ⊺ ∣ p ∣ ¬φ ∣ φ ∧ φ ∣ (propositional logic)

◊D φ ∣ FT φ ∣ (spatio-temporal logic)

X ∣ µX.φ ∣ Hh φ ∣ (fixed points)

a ∣ ∃a.φ (quantification),

where a ∈ A is an agent variable, p ∈ P is a predicate, T
and D are intervals of R≥0, h ∈ R≥0 is a non-negative real,
and X ∈ X is a fixed-point variable. We impose the usual
condition that, for µX.φ to be well-formed, all occurrences
of X must be positive in φ (i.e., they occur under an even
number of negations).

Intuitively, agent formulas hold for some agents, or equiv-
alently represent a set of agents (those agents for which the
formula holds). This intuition is made precise in Definition 6.
The propositional logic constructs are self-explanatory. The
FT φ construct is the temporal eventually modality: it holds
for agent a if there is a point in time t ∈ T when φ holds for a.
The ◊D φ construct is the diamond modality, an equivalent
to eventually for agent connectivity: it holds for a if there
is b “connected” to it (i.e., within a certain distance from
it) for which φ holds. The µX.φ construct is the least fixed
point construct. The only unusual construct is the horizon
construct HT , whose use we will explain in Section II-B.

We use the usual syntactic sugar for propositional logic
�, φ ∨ ψ, φ → ψ, as well as GT φ ≡ ¬FT ¬φ and ◻D φ ≡
¬◊D ¬φ for spatio-temporal operators, ∀a.φ ≡ ¬∃a.¬φ for
universal quantification, and νX.φ ≡ ¬µX.¬φ[X → ¬X]
for greatest fixed point. We also use F φ and Gφ when the
time interval is [0,+∞).

time

h

spacea b

d

Fig. 1. Known and possible trajectories of agents

Free and bound variables are defined as usual. A formula
is closed if all X ∈ X in φ are bound.

Definition 2 (Truth formulas). Truth formulas are given by
the following grammar:

Φ ∶∶= ⊺ ∣ φ ≤ φ ∣ ¬Φ ∣ Φ ∧Φ ∣ FT Φ ∣ ∃a.Φ,

where φ and ψ are closed agent formulas in φ ≤ ψ, and the
rest is as in Definition 1.

Truth formulas use the same constructs as agent formulas
except fixed points and diamond, and also allows for com-
parison of agent formulas through φ ≤ ψ.

We also introduce some syntactic sugar for equality on
agent formulas: φ = ψ ≡ (φ ≤ ψ)∧(ψ ≤ φ), a ≠ b ≡ ¬(a = b).

Example 3 (Connectedness of communication graph). We
consider a network of communicating agents where agents
can communicate up to some distance d. The communication
graph Gt at time t of such a network is a graph whose nodes
are agents, and there is an edge between a and b if they are
within communication range at time t. The following formula
expresses connectivity of the communication graphs between
agents at all times:

G ∀a. (⊺ ≤ µX. (a ∨ ◊[0,d] X)).

The subformula µX. (a ∨ ◊[0,d] X) represents the set of
agents that can be reached in the communication graph from
the agent represented by a. Therefore, the whole formula
expresses the fact that, at all times, all agents are reachable
from any other agent, so the communication graph is con-
nected. Another way to state the same property is as follows:

Φcon = G ∀a, b. a ≤ µX. (b ∨ ◊[0,d] X).

We will show later in Example 8 that this formula indeed
has its intended meaning.

B. Semantics

In this section, we give a semantics to agent and truth
formulas. In general, a semantics takes a formula and a model
(in our case, a signal of all agent positions at all times), and
returns a boolean: whether the formula is true or false in this
model. In our case, however, we need to be slightly more
subtle: because of the presence of fixed points and temporal
operators, we may need to look arbitrarily far into the future
to prove or disprove a formula. Let us show an example.



Example 4 (Communcation chain). Let us consider the same
setting as in Example 3, but with agents re-broadcasting
messages sent by other agents for duration t. The following
formula expresses the existence, at all times and for all pairs
(a, b) of agents, of a communication chain from a to b, that
is a list of agents that can communicate within time t to
transmit a message from a to b:

Φch = G ∀a, b. a ≤ µX. (b ∨ F[0,t] ◊[0,d] X). (1)

However, deciding whether Φch holds may require knowing
an arbitrarily long part of the signal (even if we restrict to
G[0,T ]). Let us assume that the whole network consists of
two agents a and b that move on a line, as in Fig. 1. If we
look at the signal up to time h, we can neither prove nor
disprove the existence of a communication chain from a to
b: if a follows the red trajectory in the future, there will be
no such chain, but there will be one if it follows the blue one
(namely a→ a→ . . .→ a→ b).

There are two problems with this. First, we may need
infinite time before being able to compute the semantics,
which is not feasible in practice. Second, and more impor-
tantly, we may want to express properties such as “there
exists a communication chain from a to b such that they
can communicate within time t”, which cannot be expressed
with the current examples.

As a first step towards fixing this, we use a three-valued
logic, rather than a boolean one. The semantics of a formula
can thus also be indeterminate (⊺�), meaning that we do not
have enough information to determine its actual value.

This single change does not however solve the problem.
Indeed, in the case we describe in Example 4, the semantics
of Φch would be ⊺� unless we look at the whole time interval.
We therefore introduce the horizon construct, whose purpose
is to “give up” on trying to prove that a formula holds: if
the semantics of φ is undetermined and “enough time has
passed”, then we “stop searching” and say it is false.

Example 5 (Bounded-time communication). Building on
Example 4, we express the fact that all agents can com-
municate with one another within time t. This property can
be expressed by

G ∀a, b. a ≤Ht µX. (b ∨ F[0,t] ◊[0,d] X). (2)

This is the same formula as (1), with an added horizon
construct Ht. The intuitive meaning of this construct is that
it forbids chains that are longer than t.

The semantics of a formula is relative to a model. Our
models here are signals. Given a set A of agents, a signal is
a function σ∶ (A×R≥0) →M , which represents the fact that
agents evolve through time in space M .

The final piece of structure we need before we can define
the semantics, is contexts. A context is a partial function that
maps X to functions (R≥0 ×R) → A→ 3 and A to A.

Definition 6 (Semantics). The semantics JφKρ (σ, t, h) of an
agent formula φ on signal σ, at time t ∈ R≥0, with horizon
h ∈ R, and in context ρ is an uncertain set of agents defined

inductively as in Fig. 2. The semantics JΦKρ (σ, t, h) ∈ 3 of
truth formulas is also given in Fig. 2.

The existence of fixed points is ensured by the fact that
variables appear positively in fixed-point formulas. When
writing JφKρ (σ, t, h), we assume that ρ is defined on all
free variables of φ. All of the definitions are rather standard,
except for a few points that we describe here.

The first unusual point is the presence of the horizon
variable h, which represents how much into the future we
are allowed to see. This variable is untouched by most
constructs. However, when constructs make use of positions
(such as ◊D φ), if the horizon h is negative (i.e., we do not
know the value of the signal at that point in time), then the
semantics uses ⊺�. When constructs do not use positions (such
as a), then it does not matter whether the horizon is negative
or not. Moreover, the semantics of FT φ shifts the horizon
variable to reflect the fact that we evaluate the semantics of
φ at a different point in time.

Secondly, the semantics of the diamond modality is rather
long, but J◊D φKρ (σ, t, h)(a) is ⊺ if h ≥ 0 and there
is an agent b whose distance from a at time t is in D
and JφKρ (σ, t, h)(b) is ⊺, which corresponds to the usual
semantics of ◊D. It is � in two cases: first, if h ≥ 0 and for
all agents b, either their distance to a at time t is not in D
or JφKρ (σ, t, h)(b) is �; second, if h < 0 and for all agents
b, JφKρ (σ, t, h)(b) is �. In the first case, we have access to
positions and can refute the formula if the distance between
agents is not in D. In the second one, do not have access
to positions, and must therefore refute φ for all agents to be
sure that ◊D φ is �. It is ⊺� otherwise: either h < 0 and there
is an agent b such that JφKρ (σ, t, h)(b) is not �, or h ≥ 0
and there is an agent b whose distance to a at time t is in
D and such that JφKρ (σ, t, h)(b) is ⊺�.

Remark 7 (Diamond modality, space, and connectivity).
In this paper, the diamond modality has a spatial flavour,
since we chose its interpretation to be about the distance
between agents. In this sense, our logic is close to spatio-
temporal logics. However, from a theoretical point of view,
the diamond modality is an agent modality, rather than
a spatial one, and we could similarly define a semantics
on a graph, rather than on trajectories (µTGL stands for
Temporal Graph Logic with Fixed Points). We stick to this
interpretation of the diamond modality in this paper because
it is general enough to express the properties we are inter-
ested in.

Finally, the only non-standard construct is Ht φ. Intu-
itively, it asks whether φ is true by looking only at horizon h′.
To do so, it computes the semantics of φ with (the potentially
shorter) horizon min(h,h′) and returns it. However, when
h ≥ h′, we have a long enough horizon to give a boolean
answer, and therefore ⊺� is changed to � (we were unable to
prove the property with horizon h′). This helps give formulas
a boolean value in finite time, since it gets rid of ⊺� values
when enough time has passed.

Example 8 (Semantics of Φcon). For any formula φ where X



J⊺Kρ (σ, t, h) = ⊺ JpKρ (σ, t, h)(a) = {
p(σ(a, t)) if h ≥ 0
⊺� otherwise J¬φKρ (σ, t, h) = ¬ JφKρ (σ, t, h)

Jφ ∧ ψKρ (σ, t, h) = JφKρ (σ, t, h) ∧ JψKρ (σ, t, h) JFT φKρ (σ, t, h) = ⋁
t′∈T

JφKρ (σ, t + t
′, h − t′)

J◊D φKρ (σ, t, h)(a) = {
⋁b∈A(JφKρ (σ, t, h)(b) ∧ d(σ(a, t), σ(b, t) ∈D) if h ≥ 0
(⋁b∈A JφKρ (σ, t, h)(b)) ∧ ⊺� otherwise JaKρ (σ, t, h) = {ρ(a)}

J∃a.φKρ (σ, t, h) = ⋁
b∈A

JφKρ[a→b] (σ, t, h) JXKρ (σ, t, h) = ρ(X)(t, h) JµX.φKρ (σ, t, h) = lfp(f ↦ JφKρ[X→f] (σ,−,−))(t, h)

JHh′ φKρ (σ, t, h)(a) = {
� if JφKρ (σ, t, h

′
)(a) = ⊺� and h ≥ h′

JφKρ (σ, t,min(h,h′))(a) otherwise

Jφ ≤ ψKρ (σ, t, h) = ⋀
a∈A

(JφKρ (σ, t, h)(a) → JψKρ (σ, t, h)(a))

Fig. 2. Definition of the semantics

only appears positively, by the Kleene fixed-point theorem,
the sequence f0(t, h) = �, fn+1(t, h) = JφKρ[X→fn] (σ, t, h),
reaches a fixed point, and JφKρ (σ, t, h) = supn∈N fn(t, h).

We apply this to Φcon from Example 3. Let us assume h ≥ 0,
then we have

q
b ∨ ◊[0,d] X

y
ρ
(σ, t, h)(a) =

{ρ(b)} ∨ ⋁
c∈A

(ρ(X)(t, h) ∧ d(σ(a, t), σ(c, t)) ≤ d).

If we denote by Gt the graph of agents, where a and
a′ are connected if and only if d(σ(a, t), σ(a′, t)) ≤ d,
then we get that fn+1(t, h) is the set of agents reachable
from ρ(b) by a path of length at most n in Gt. Thereforeq
µX. (b ∨ ◊[0,d] X)

y
ρ
(σ, t, h) is the set of agents reachable

from ρ(b) in Gt. Note in particular that it is a set, in the
sense that it does not map any agent to ⊺�. Therefore, the
whole formula states that, at all times, for all agents a and
b, a is reachable from b at time t, so the communication
graph at time t is connected.

C. Properties of horizons

Here, we discuss several properties of µTGL relative to
horizons. First, we want to show that ⊺� indeed corresponds
to the fact that the current data is not enough to conclude
whether the semantics is true or false. To represent informa-
tion gain, we define the information order ⪯ on 3 generated
by ⊺� ≺ ⊺ and ⊺� ≺ �. First, we should show that having a
longer horizon can only lead to more information.

Lemma 9 (Monotonicity of semantics). For all H-free
formulas φ, t ∈ R≥0, h ≤ h′ ∈ R, signals σ, and monotone
contexts ρ (i.e., such that ρ(X) is ⪯-monotone in h for all
X), JφKρ (σ, t, h) ⪯ JφKρ (σ, t, h′).

This allows us to give meaning to the following notion:

Definition 10 (h-determination). We say that φ is h-
determined for h ∈ R≥0, if for all times t, signals σ, and
contexts ρ, JφKρ (σ, t, h) ≠ ⊺�. We write σ, t ⊧ρ φ to denote
the fact that JφKρ (σ, t,+∞) is ⊺ and σ, t ⊭ρ φ when it is �.

By Lemma 9, if JφKρ (σ, t, h) = ⊺ for some h ∈ R, then
σ, t ⊧ρ φ, and similarly for �. By Example 4, we know that
there are H-free formulas such that JφKρ (σ, t, h) = ⊺� for all
h ∈ R. The following lemma shows that this behaviour does
not happen with infinite horizons, which is expected: having
information about the whole signal is enough to decide the
semantics.

Lemma 11 (+∞-determination). For all formulas φ, t ∈ R≥0,
signals σ, and contexts ρ, either σ, t ⊧ρ φ or σ, t ⊭ρ φ.

The following lemma gives a concrete meaning to the
intuition that ⊺� corresponds to a lack of information about
the signal.

Lemma 12 (Horizon lemma). For all H-free formulas φ,
t ∈ R≥0, h ∈ R, signals σ, and monotone contexts ρ:

● if JφKρ (σ, t, h) = ⊺, then for all σ′ such that σ′∣[t,t+h] =
σ∣[t,t+h], σ′, t ⊧ρ φ,

● if JφKρ (σ, t, h) = �, then for all σ′ such that σ′∣[t,t+h] =
σ∣[t,t+h], σ′, t ⊭ρ φ,

where σ∣t,t′ is the restriction of σ to [t, t′].

As an immediate corollary, we get that, if there are signals
σ1 and σ2, with σi∣[t,t+h] = σ∣[t,t+h], σ1, t ⊧ρ φ and σ2, t ⊭ρ
φ, then JφKρ (σ, t, h) = ⊺�.

By Lemma 12, the semantics of an h-determined formula
only depends on a window of size h of the signal. A
streaming algorithm is therefore able to yield a result for
time t after it has received the input signal up to time t+h.

For any formula φ, we can statically compute a horizon



φ (possibly infinite) as follows:

⊺ ∶= 0, f(a) > 0 ∶= 0,
¬φ ∶= φ, φ ∧ ψ ∶=max(φ,ψ),

◊D φ ∶= φ, F[s,t] φ ∶= φ + t,

X ∶= 0, µX.φ ∶=
⎧⎪⎪⎨⎪⎪⎩

0 if φ = 0
∞ otherwise,

a ∶= 0, ∃a.φ ∶= φ,
Ht φ ∶=min(t, φ), φ ≤ ψ ∶=max(φ,ψ).

Lemma 13 (Bounded horizon). All formulas φ are φ-
determined.

D. Notable Formulas

Here, we give some typical agent formulas that are useful
when specifying properties, as well as their semantics.

1) Reachability: The first class of formulas we are inter-
ested in are formulas that express reachability properties. In
our context, this corresponds to the possibility to reach an
agent that satisfies some property ψ. One such formula is

Φreach,ψ = µX. (ψ ∨ ◊D X). (3)

Note that this is the shape of Φcon from Example 3. Its
semantics is basically the same as the one in Example 8,
but with a general formula ψ.

A variation on (3) is φ = µX. (ψ ∨ FT ◊D X), which adds
a temporal aspect to the formula. Its semantics JφKρ (σ, t, h)
maps a to:
● ⊺ if there exist agents a1, . . . ,an and times t1, . . . , tn−1

such that a1 = a, for all i < n, d(σ(ai, ti), σ(ai+1, ti)) ∈
D, for all i < n − 1, ti+1 − ti ∈ T , tn−1 ≤ h, and
JψKρ (σ, t + tn, h − tn)(an) = ⊺,

● ⊺� if there exist agents a1, . . . ,an and times t1, . . . , tn−1
such that a1 = a, , for all i < n, d(σ(ai, ti), σ(ai+1, ti)) ∈
D, for all i < n − 1, ti+1 − ti ∈ T , and tn−1 > h or
JψKρ (σ, t + tn, h − tn)(an) = ⊺� (and we are not in the
previous case)

● � otherwise.
Note that this is the shape of Φch from Example 4 and
that the semantics above is a formal definition of what a
communication chain from a to some agent that satisfies ψ
is. More precisely, the semantics is ⊺ if there is a chain within
horizon h, ⊺� if there may be a chain after horizon h (but we
do not have enough information to know yet), and � if we
know there is no such chain (no matter the horizon).

2) Safety: Another class of formulas of particular interest
is that of safety formulas, which in our case correspond to
formulas that we can never reach an agent that satisfies some
formula ψ. The typical formula that expresses this is

Φsafe,ψ = νX. (¬ψ ∧ ◻DX). (4)

Note that it is the negation of Φreach,ψ (up to double nega-
tions), and therefore its semantics is also negated. It therefore
exactly describes the impossibility to reach any agent that
satisfies ψ.

As in the previous section, we can modify (4) to obtain
φ = µX. (ψ ∨ FT ◊D X), which expresses the inexistence of
communication chains to any agent that satisfied ψ.

E. Expressive Power

We want to briefly discuss the expressive power of µTGL.
First, let us consider the variant of MITL [10] with syntax:

φ ∶∶= p ∣ ¬φ ∣ φ ∨ φ ∣ FT φ.

In order to compare µTGL to MITL, they need to use
the same predicates, and we need to extend the set of MITL
predicates to contain some spatial operators. We thus assume
that MITL has a predicate pa for each predicate p of µTGL
and agent a which holds when p holds for agent a. We
also add a predicate da,b,D to MITL predicates for each
distance interval D ⊆ R≥0 and agents a and b. It holds when
the distance between a and b is in D. Note that, in order
to do this, we need to know in advance all agents in the
network, so MITL is limited compared to µTGL on that
point. Nevertheless, to be able to compare the two logics,
we assume that the number of agents is known in advance.

Lemma 14. MITL is strictly less expressive than µTGL.

The translation of MITL into µTGL is straightforward.
Conversely, formulas such as Φch from Example 4 cannot be
expressed in MITL.

We can also express basic counting properties in µTGL
[7], by which we mean that we can express properties such
as “at least n agents that satisfy φ”.

Given a constant integer n and a formula φ with an open
agent variable a, we can define the following syntactic sugar:

(∣φ∣ ≥ n) = ∃a1, . . . , an. (⋁
i
⋁
j≠i

(ai ≠ aj)) ∧ (⋀
i

φ[a→ ai]),

(∣φ∣ ≤ n) = ∃a1, . . . , an.∀a.φ→ a ≤ ⋁
i

ai,

(∣φ∣ = n) = (∣φ∣ ≥ n) ∧ (∣φ∣ ≤ n).

These formulas have the obvious meaning, e.g., the first one
means “at least n agents satisfy φ”.

III. EXAMPLES

In this section, to showcase the expressive power of µTGL,
we discuss scenarios and formulas that express interesting
properties of these scenarios.

A. Communication

We start by expressing the existence of certain types of
communication chains in networks of communicating agents.
In all the following examples, we assume that we want to
model a similar situation as in Example 4, where agents can
communicate up to distance d.

Example 15 (Communication time). A possible refinement
of Example 5 is to model the communication as taking a
fixed amount of time ε. We can then slightly modify (2) to
obtain

G ∀a, b. a ≤Ht µX. (b ∨ F[ε,t] ◊[0,d] X).



Note that communication chains may no longer be of arbi-
trary length, since at least ε has to pass when communicating
to another agent.

Example 16 (Message storing). Building on Example 15,
we can also model a scenario where agents only store the
messages they receive for a finite amount of time s. The
existence of a communication chain in this scenario can be
expressed by

HtG ∀a, b. a ⊆ µX. (b ∨ F[ε,s] ◊[0,d] X).

Example 17 (Chains of bounded length). While our logic
is not designed to, properties such as the existence of
communication chains of bounded length in the number of
agents can also be expressed by “unrolling” fixed points in
the previous formulas. For example, the fact that, at all times,
any two agents can communicate by passing through at most
one other agent can be expressed as

G ∀a, b. a ⊆ b ∨ ◊[0,d] (b ∨ ◊[0,d] b).

We can also model scenarios where communication is
impeded, either in some specific zones or by malicious agents
jamming signals.

Example 18 (Communication-forbidding zones). Assume
that there is a zone Z ⊆ M where communication is
impossible. We can define a predicate z such that z(x) holds
if and only if x ∈ Z. The existence of communication chains
between all agents can be expressed by

G ∀a, b. a ⊆ µX. (¬z ∧ (b ∨ F[0,t] ◊[0,d] X)).

Adding the ¬z subformula ensures that all agents must be
outside Z in any communication chain.

Example 19 (Jamming agents). We can model a scenario
where malicious agents can jam the communication between
two agents if they are within distance j of either the sender
or the receiver of the message. If agents evolve in space
M , we can model them as evolving in M ′ = {0,1} ×M ,
with d′ inherited from d (d′((i, x), (i, y)) = d(x, y) and
d′((i, x), (1 − i, y)) = 1 + d(x, y)), where malicious agents
are labelled 1. We can define a predicate j that holds on
points of the form (1, x), i.e., malicious agents.

In such a scenario, the existence of communication chains
between all agents can be expressed by

G ∀a, b. ((a ∨ b ≤ ¬j) ∧ (a ≠ b)) →
(a ≤ µX. (¬◊[0,j+1] j ∧ (b ∨ F[0,t] ◊[0,d] X)))

B. Network Topologies

Our logic can also express the existence of specific net-
work topologies, and not only connectedness. In this section,
we will assume for simplicity that D = [0,d].

Example 20 (Star topology). The simplest topology to
express in our logic is the star topology, in which there is
a single agent a that is linked to all other agents, and no

other agents are linked to one another. This topology can be
expressed by

Φ⋆ = ∃a.∀b. (b ⊆ ◊D a) ∧ (a ≠ b→ ◊D b ⊆ a ∨ b)

While Φ⋆ holds when agents are linked through a star
topology, it may also be useful to know when there is a star
communication topology, possibly with more connections,
which is simply expressed by

Φ̃⋆ = ∃a.∀b. b ⊆ ◊D a.

Example 21 (Linear topology). We can also express the fact
that agents are linked through a linear topology, i.e., there
is a line of agents connecting all agents together. This can
be expressed by

Φ− = Φcon ∧ ∃a, b. ∣◊D a∣ = 2 ∧ ∣◊D b∣ = 2 ∧
∀c. (c ∧ (a ∨ b) ⊆ ∅) → ∣◊D c∣ = 3.

Example 22 (Ring topology). Finally, we can also express
the fact that the communication graph between the agents
forms a ring by

Φ○ = Φcon ∧ ∀a. ∣◊D a∣ = 2.

C. MITL Properties

As expressed by Lemma 14, MITL properties (of agents)
can be expressed in µTGL. More precisely, any MITL
property φ can be translated to some µTGL formula φ′ that
describes the set of agents that satisfy φ. This translation can
be used to model certain kinds of scenarios.

The first typical case is when all agents must satisfy some
MITL property (for example a safety property, stating that
agents must stay in some safe zone). That all agents satisfy
this property is expressed in µTGL as ⊺ ≤ φ′. The second
typical case is when at least one agent must satisfy some
property (for example a progress property, stating that the
agent much reach some zone). That at least an agent satisfies
this property is directly expressed as ¬(φ′ ≤ �).

Example 23 (MITL goals and connectivity). Let us con-
sider a scenario where agents must “link” a starting zone
(expressed as some predicate s) to a goal zone (stated as
some predicate g). Formally, there are three requirements:
1) that some agent stays in the start zone at all times
(expressed as the MITL property G s), 2) that some agent
eventually reaches goal (MITL property F g), 3) that the
communication graph stays connected at all times (µTGL
property GΦcon). Then the formula that models the desired
property is GΦcon ∧ (⊺ ≤ G s) ∧ ¬(F g ≤ �).

IV. MONITORING

A. Monitoring Algorithm

In this section we describe an algorithm for monitoring a
µTGL formula, see Algorithm 1.



1) Data structures: The algorithm manipulates values
representing piecewise constant functions R≥t0 → X , for
some set X . Such a function is represented by a sequence
of samples, pairs

x = ((t0, x0), . . . , (tn, xn))

where ti ∈ R≥0 and xi ∈ X . This represents the signal
x̄∶R≥t0 →X such that

x̄(t) =
⎧⎪⎪⎨⎪⎪⎩

xi when ti ≤ t < ti+1, for some 0 ≤ i < n,
xn when tn ≤ t.

The time t0 is the start time and denoted start(x). When
the signal to be represented is only defined over some finite
interval, there is also a specified end time end(x), in which
case x̄(t) = xn for all tn ≤ t ≤ end(x).

The main operation we need on signals represented in this
way is to zip them. This is a procedure which takes a signal
x of values of type X , a signal y of values of type Y , and
produces a signal x × y of values of type X × Y , such that

x × y(t) = (x̄(t), ȳ(t))

for all t for which both x̄(t) and ȳ(t) are defined. This is
achieved by unifying the time-indices in x and y.

Uncertain sets, that is, functions A → 3 in the semantics,
are represented as A-intervals [U,V ] (U,V ∈ P(A)) indicat-
ing that the uncertain set could be any X ∈ P(A) such that
U ⊆X ⊆ V , that is:

[U,V ](a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⊺ if a ∈ U ,
⊺� if a ∉ U and a ∈ V ,
� if a ∉ V .

The intuition here is that what is known about the uncertain
set is a lower bound U (elements that are surely members),
and an upper-bound V (all possible members). We denote
by � the A-interval [∅,∅], which represents the uncertain
set a↦ �.

The uncertain sets manipulated in the algorithm also
depend on a horizon parameter h ∈ R≥0, representing how
much future lookahead the information in the uncertain set
depends on. To model this we use signals of A-intervals
which always start from time index 0. The signal which is
constantly � is also denoted �.

All in all, a semantic value w̄∶R≥t0 × R≥0 × A → 3 is
represented by a signal of signals of A-intervals:

w =
⎛
⎜
⎝

(t0, ((h0,0, [U0,0, V0,0]), . . . , (h0,m0 , [U0,m0 , V0,m0]))),
⋮

(tn, ((hn,0, [Un,0, Vn,0]), . . . , (hn,mn , [Un,mn , Vn,mn])))

⎞
⎟
⎠

such that

w̄(t, h, a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⊺ if a ∈ Ui,j ,
⊺� if a ∉ Ui,j and a ∈ Vi,j ,
� if a ∉ Vi,j .

whenever

ti ≤ t < ti+1 and hi,j ≤ h − (t − ti) < hi,j+1.

2) Computing semantics: We first describe computing the
semantics of a formula φ on a finite signal w with start time
t0 and end time end(w) = tend. The computation proceeds
by induction on the structure of φ. Most of the cases are
simple, so we will only describe the cases φ ∨ ψ, F[a,b] φ
and µX.φ.
● For φ ∨ ψ, the semantics are computed for φ and
ψ individually, producing two output signals wφ and
wψ . Zipping these two signals produces wφ × wψ , a
signal of pairs of signals of A-intervals. These pairs are
themselves zipped, thus producing a signal of signals of
pairs of A-intervals. Finally these pairs of A-intervals are
joined using the union operation lifted to A-intervals:

[U,V ] ∨ [U ′, V ′] ∶= [U ∪U ′, V ∪ V ′],

thereby producing the desired result wφ∨ψ . Here we use
that [U∪U ′, V ∪V ′](a) = [U,V ](a)∨[U ′, V ′](a). Most
of the other logical operations are computed in a similar
point-wise fashion. The operation

wφ ∨wψ ∶= wψ∨ψ

just described will also be used in the semantics of
F[a,b] φ.

● The semantics of F[a,b]φ is computed by first computing
the semantics wφ of φ. Then, for each sample (t,wφ,t) ∈
wφ that lasts till t′ ∈ R≥0, we construct the signal of
signals

F (t, t′,wφ) ∶= ((t0,�), (t−b,delayb(wφ,t)), (t′−a,�))

with end time tend. This represents the information of
wφ available in [t, t′] given an allowed future look-
ahead of some duration d ∈ [a, b]. To understand this
consider the following diagram:

t t′t − b t′ − a

0 a b

0 a b

The blue region represents the non-� portion of
F (t, t′,wφ). Here, a delay is needed to account for the
fact that this lookahead has used up some of the horizon.
This is defined by

delayb(x)(s) =
⎧⎪⎪⎨⎪⎪⎩

� when 0 ≤ s < b,
x̄(s − b) when b ≤ s.

for all signals x. The semantics of F[a,b]φ is then
obtained by

⋁F (t, t′,wφ).

where the disjunction is taken over all the piecewise
constant parts of wφ described above.

● The semantics of µX.φ is computed by repeatedly
computing the semantics of φ while using increasing
values for resolving the variable X , starting with X = �.
Since X appears only positively in φ, successive values



Algorithm 1: Monitoring algorithm.
Input: a µTGL formula φ, a stream S
Output: a stream of {�,⊺}

1 initialise the µ-cache to � for all top-level µ’s of φ;
2 hmax ← φ;
3 if hmax = ∞ then
4 fail;
5 end
6 w ← ingest a window of size ≥ hmax of samples from

S;
7 t← 0;
8 repeat
9 o←Semantics(φ,w);

10 yield ō(t, hmax);
11 drop the first sample from w and all items in the

µ-cache;
12 t← start(w);
13 s← ingest new samples from S until w has size

≥ hmax;
14 Add a � sample to the end of all items in the

cache;
15 until end of input stream S;

of X must be increasing. Since the number of agents is
finite, we are guaranteed to reach a fixed point in finite
time.

3) Streaming algorithm: We are now able to describe a
streaming monitoring algorithm. This is achieved by com-
puting an upper-bound hmax for the horizon of the formula
and then operating on a window of size hmax. Over such
a window the semantics are computed as described above.
Most forms are not computationally expensive, the excep-
tions are the µ-forms which may require a large number
of iterations before reaching a fixed point. Therefore, we
re-use the work done for computing the µ-forms of the
previous window. When monitoring a formula φ, all toplevel
µ-forms of φ, that is, all subformulas µX.ψ of φ that are
not themselves sub-formulas of another µ-form, form the
index of the µ-cache. This is a mapping of such subformulas
to semantic values over the current time window. When
computing the semantics of a toplevel µ-form µX.ψ over
the current window, instead of starting the iteration at X = �,
the current value of the cache is used instead.

The streaming algorithm is described in Algorithm 1. The
use of the µ-cache produces a correct result thanks to the
following two lemmas. The first ensures that to compute
µX.ψ, the algorithm can start iterating from any element
we know to be smaller than the least fixed point, rather than
always starting at �:

Lemma 24. Assume L is a dcpo1 and that f ∶L → L is
a Scott-continuous function with least fixed point M . If
N ≤ M , then the supremum of the ascending Kleene chain
starting at N is M .

1directed-complete partial order

The second ensures that when computing µX.ψ of a prefix
of a signal, the result obtained is smaller than the result for
the full signal. In fact this is true for any positive formula:

Lemma 25. If σ′ is a prefix of σ, and φ is positive, then

JφKρ (σ
′, t, h)(a) ≤ JφKρ (σ, t, h)(a).

V. EXTENDED EXAMPLE: RESILIENT
CONSENSUS

In this section, we prove the usefulness of our logic and
monitoring algorithm on the example of resilient consensus.
In Section V-A we give context and the existing relevant
results on resilient consensus. In Section V-B, we extend
µTGL and give a formula that ensures resilient consensus.
In Section V-C, we discuss causality in consensus and derive
another formula for resilient consensus. Finally, in Section V-
D, we discuss a specific example and test our monitoring
algorithm on it.

A. A Property for Resilient Consensus

We consider the resilient consensus problem in the pres-
ence of malicious/faulty agents. This problem involves a
number of cooperative agents that try to reach agreement on
a scalar value by exchanging data according to a consensus
protocol and non-cooperative agents that do not follow the
protocol either intentionally or due to a fault. In particular,
we consider scenarios where the cooperative agents do not
know which other agents are cooperative and thus may
receive and use malicious/faulty data transmitted from non-
cooperative agents.

It was shown in [14], [15] that consensus among coop-
erative agents is possible if the number of non-cooperative
agents is sufficiently small and the graph representing the
inter-agent communication topology has sufficiently large
connectivity. In those articles, the connectivity of a graph
was characterized through the notion of r-robustness. For a
given a graph G with node set V , edge set E ⊆ V × V ,
and neighbor sets Ni = {j ∣ (i, j) ∈ E}, i ∈ V , this notion is
defined as follows.

Definition 26 (r-robustness [14]). Given a positive integer
r, a graph G is r-robust, if ∀S1, S2 ∈ 2V ∖ {∅} such
that S1 ∩ S2 = ∅, we have {i ∈ S1 ∣ ∣Ni ∖ S1∣ ≥ r} ≠ ∅ or
{i ∈ S2 ∣ ∣Ni ∖ S2∣ ≥ r} ≠ ∅ or both.

An intuitive meaning of r-robustness is that, for any two
non-empty sets, if we choose any r − 1 nodes in the graph,
then there is always a path between these two sets that avoids
these r − 1 nodes.

Recently, the notion of r-robustness was extended in [16]
to handle the cases where the inter-agent communication
topology is time-varying. In the setting of [16], the com-
munication topology at each time t ∈ N is represented by a
graph G[t] with node set V , edge set E[t], and neighbor sets
Ni[t] = {j ∣ (i, j) ∈ E[t]}, i ∈ V . The notation ⋃Tτ=0G[t−τ]
represents the union graph with node set V , and edge set
⋃Tτ=0E[t− τ]. For a given time-varying graph G, the notion
of (T, r)-robustness is defined as follows.



Definition 27 ((T, r)-robustness [16]). Given positive inte-
gers T and r, a time-varying graph G is (T, r)-robust if
⋃Tτ=0G[t − τ] is r-robust for every t ≥ T .

It was shown by [16] that consensus among cooperative
agents can be achieved if there are at most F non-cooperative
agents in the network and the time-varying graph represent-
ing the communication topology is (T,2F + 1)-robust.

Time-varying communication topologies and the notion
of (T, r)-robustness are particularly useful for scenarios
where inter-agent data transmissions require the agents to
be physically close to each other. In such scenarios there is
a communication radius and two agents can exchange data
only when their distance is smaller than it.

The techniques that we introduced in earlier sections allow
us to develop monitoring algorithms for assessing (T, r)-
robustness in scenarios with time-varying communication
topologies by using the history of the physical locations of
agents and the communication radius.

B. Extending µTGL
In order to express (T, r)-robustness, we extend µTGL

with a second-order agent quantification construct ∃s.φ with
the following semantics:

J∃s.φKρ (σ, t, h) = ⋁
S⊆A

JφKρ[s→S] (σ, t, h).

This extension comes with syntactic sugar a ∈ S ≡ a ≤ s,
a ∉ s, and ∣s∣ ≥ n and such defined as in Section II-E. We
also allow truth formulas inside agent formulas. For example,
we allow formulas such as µX.Φ ∧ (b ∨ ◊D X), which is
the connected component of ρ(b) if Φ holds, and empty
either. Formally, the semantics of a truth formula seen as an
agent formula is defined as JΦKρ (σ, t, h)(a) = JΦKρ (σ, t, h)
(where Φ is seen as a truth formula on the right). Extending
the monitoring algorithm is straightforward.

With this extension of µTGL, we can directly encode the
definition of (T, r)-robustness.

Lemma 28 ((T, r)-robustness in µTGL). Given a signal
σ, a distance interval D ⊆ R≥0, T ∈ R≥0, and r ∈ N,
the communication graph is (T, r)-robust if and only if σ
satisfies

G ∀s, s′. (∃a. a ∈ s ∧ a ∈ s′) ∨ reachT,r(s) ∨ reachT,r(s′),

where reachT,r(s) is

∃a, a1, . . . , ar. a ∈ s ∧ (⋀ri=1⋀rj=i+1 ai ≠ aj) ∧
(⋀ri=1 ai ∉ s ∧ ai ≤ F[0,T ] ai) .

C. Robustness and Causality

As we explained, an intuition behind r-robustness is that
it guarantees the existence of paths that avoid any fixed r−1
agents. However, the notion of (T, r)-robustness does not
have the same intuition, because it not causal: the path in
⋃Tτ=0G[t−τ] may not be a causal chain, as illustrated in the
next example.

Example 29 ((T, r)-robustness and causality). Let us con-
sider a scenario with three agents a, b, and c, moving

time

T

2T

spacea b c

d

Fig. 3. A (T,1)-robust network. However, c cannot send a message to a
within time T at t = 0

on a line, as according to Section V-C, and which are all
cooperating. This network is (T,1)-robust, but at time t = 0,
c cannot send a message to a within time T .

However, since agents can only act based on the messages
they have received, whether there is consensus or not does
not depend on non-causal properties. Therefore, we may
refine (T, r)-robustness into a causal property.

Definition 30 (Causal (T, r)-robustness). Given T ∈ R≥0 and
r ∈ N, a time-varying graph G is causally (T, r)-robust if,
for every t ∈ R≥0, ∀S1, S2 ∈ 2V ∖{∅} such that S1 ∩S2 = ∅,
for any i1, . . . , ir−1, there is a causal chain that starts from
some i ∈ S1 at time t, ends at some j ∈ S2 at time t+T , and
avoids all ik’s.

Lemma 31 (Causal and non-causal (T, r)-robustnesses).
Causal (T, r)-robustness implies (T, r)-robustness. Con-
versely, if the network contains n agents, (T, r)-robustness
implies causal ((n − r)(n − r + 1)T /2, r)-robustness.

In particular, monitoring causal (T, r)-robustness is
enough to guarantee consensus, and it may be faster: moni-
toring (T, r)-robustness may be in some cases as costly mon-
itoring ((n− r)(n− r + 1)T /2, r)-robustness. The following
formula describes causal (T, r)-robustness in µTGL.

Lemma 32 (Causal (T, r)-robustness in µTGL). Given T ∈
R≥0, r ∈ N, and D ⊆ R≥0 the communication graph is
causally (T, r)-robust if and only if σ satisfies

G ∀a, b, x1, . . . , xr.

(
r

⋀
i=1

¬(xi ≤ (a ∨ b))) →

a ≤HT µX.(¬(
r

⋁
i=1

xi) ∧ (b ∨ F[0,T ] ◊D X)).

D. Monitoring for Resilient Consensus

We experimented on a perimeter surveillance scenario
[16]. In this scenario, mobile robots circle around a point,
with possibly different radii and velocities, and some of them
may be faulty or malicious. The robots in the network try to
reach consensus to agree on a perimeter to circle. We mon-
itored causal (T, r)-robustness, as expressed in Lemma 32,
which ensures that there is consensus.



Fig. 4. Signals in the perimeter surveillance scenario

We created two sets of data with eight agents (among
which one malicious agent), where agents act according to
the control policy described in [16]. The only difference
between the two data sets is that, in the first case, the
communication radius is 0.2, while it is 0.5 in the second.
The radius of the perimeter circled by each agent over time
in the two data sets is plotted in Section V-D. It can be seen
that cooperative agents reach consensus in the second case,
but not in the first one (there are two clusters).

We ran our monitoring algorithm on the two data sets for
causal (T, r)-robustness for r = 3 (which corresponds to 1
malicious agent). For the first example, we monitored causal
robustness for T = 120, and it did not hold, which means that
(non-causal) robustness is false for T = 8. For the second
example, we monitored causal robustness for T = 35, and it
held, ensuring consensus.

VI. CONCLUSION

We defined µTGL, showed its usefulness in expressing in-
teresting properties of agent networks, designed a monitoring
algorithm for it, and showed its validity on an example to
prove resilient consensus.

There is much left to do in the future. First, while this
exposition of µTGL has a strong spatial flavour, it is actually
closer to a graph logic, and we want to study it from that
angle too. From a practical point of view, it may be inter-
esting to look at general n-ary relations (rather than binary
◇), since they can be used to model interesting properties,
such as more general jamming possibilities. To shorten the
horizon used by the monitoring algorithm, we want to refine
the definition of the horizon formula, which will require
some work to detect tautologies in the logic. Finally, for
µTGL to be usable in advanced testing techniques such as

falsification, we need to define a robust (or quantitative)
semantics, which will prove challenging, since the logic
is not boolean. Another direction is to look further into
causal robustness, its relationship to non-causal robustness,
and whether it can be of algorithmic interest.

REFERENCES

[1] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler,
D. Ničković, and S. Sankaranarayanan, “Specification-based mon-
itoring of cyber-physical systems: a survey on theory, tools and
applications,” in Lectures on Runtime Verification. Springer, 2018,
pp. 135–175.

[2] L. Bortolussi and L. Nenzi, “Specifying and monitoring properties
of stochastic spatio-temporal systems in signal temporal logic,” in
Proceedings of the 8th International Conference on Performance
Evaluation Methodologies and Tools, 2014, pp. 66–73.

[3] L. Nenzi, L. Bortolussi, V. Ciancia, M. Loreti, and M. Massink, “Qual-
itative and quantitative monitoring of spatio-temporal properties,” in
Runtime Verification. Springer, 2015, pp. 21–37.

[4] I. Haghighi, A. Jones, Z. Kong, E. Bartocci, R. Gros, and C. Belta,
“Spatel: a novel spatial-temporal logic and its applications to net-
worked systems,” in Proceedings of the 18th International Conference
on Hybrid Systems: Computation and Control, 2015, pp. 189–198.

[5] E. A. Gol, E. Bartocci, and C. Belta, “A formal methods approach
to pattern synthesis in reaction diffusion systems,” in 53rd IEEE
Conference on Decision and Control. IEEE, 2014, pp. 108–113.

[6] I. Haghighi, S. Sadraddini, and C. Belta, “Robotic swarm control
from spatio-temporal specifications,” in 2016 IEEE 55th Conference
on Decision and Control (CDC). IEEE, 2016, pp. 5708–5713.

[7] Y. E. Sahin, P. Nilsson, and N. Ozay, “Multirobot coordination with
counting temporal logics,” IEEE Transactions on Robotics, vol. 36,
no. 4, pp. 1189–1206, 2019.

[8] D. Kozen, “Results on the propositional mu-calculus,” Theor.
Comput. Sci., vol. 27, pp. 333–354, 1983. [Online]. Available:
https://doi.org/10.1016/0304-3975(82)90125-6

[9] R. Koymans, “Specifying Real-Time Properties with Metric Temporal
Logic,” Real Time Syst., vol. 2, no. 4, pp. 255–299, 1990. [Online].
Available: https://doi.org/10.1007/BF01995674

[10] R. Alur, T. Feder, and T. A. Henzinger, “The Benefits of Relaxing
Punctuality,” J. ACM, vol. 43, no. 1, pp. 116–146, 1996. [Online].
Available: https://doi.org/10.1145/227595.227602

[11] O. Maler and D. Nickovic, “Monitoring Temporal Properties
of Continuous Signals,” in FORMATS 2004, ser. Lecture Notes
in Computer Science, Y. Lakhnech and S. Yovine, Eds., vol.
3253. Springer, 2004, pp. 152–166. [Online]. Available: https:
//doi.org/10.1007/978-3-540-30206-3 12

[12] P. Baldan, A. Corradini, B. König, and A. Lluch-Lafuente, “A temporal
graph logic for verification of graph transformation systems,” in
WADT 2006, ser. Lecture Notes in Computer Science, J. L. Fiadeiro
and P. Schobbens, Eds., vol. 4409. Springer, 2006, pp. 1–20.
[Online]. Available: https://doi.org/10.1007/978-3-540-71998-4 1

[13] M. Bergmann, An Introduction to Many-Valued and Fuzzy Logic:
Semantics, Algebras, and Derivation Systems. Cambridge University
Press, 2008.

[14] H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram, “Resilient
asymptotic consensus in robust networks,” IEEE Journal on Selected
Areas in Communications, vol. 31, no. 4, pp. 766–781, 2013.

[15] H. Zhang, E. Fata, and S. Sundaram, “A notion of robustness in com-
plex networks,” IEEE Transactions on Control of Network Systems,
vol. 2, no. 3, pp. 310–320, 2015.

[16] D. Saldana, A. Prorok, S. Sundaram, M. F. Campos, and V. Kumar,
“Resilient consensus for time-varying networks of dynamic agents,”
in Proc. American control conference, 2017, pp. 252–258.

https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1007/BF01995674
https://doi.org/10.1145/227595.227602
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-71998-4_1

	INTRODUCTION
	TGL
	Syntax
	Semantics
	Properties of horizons
	Notable Formulas
	Reachability
	Safety

	Expressive Power

	EXAMPLES
	Communication
	Network Topologies
	MITL Properties

	MONITORING
	Monitoring Algorithm
	Data structures
	Computing semantics
	Streaming algorithm


	EXTENDED EXAMPLE: RESILIENT CONSENSUS
	A Property for Resilient Consensus
	Extending TGL
	Robustness and Causality
	Monitoring for Resilient Consensus

	CONCLUSION
	References

