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Abstract

We define and study the fundamental pro-finite 2-groupoid Π2(X ) of varieties X defined over a
field k. This is a higher algebraic invariant of a scheme X , analogous to the higher fundamental
path 2-groupoids as defined for topological spaces. This invariant is related to previously defined
invariants, for example the absolute Galois group of a field, and Grothendieck’s étale π1.

The special case of Brauer-Severi varieties X is considered, in which case a “sections conjec-
ture” type theorem is proved. It is shown that a Brauer-Severi variety X has a rational point if
and only if its étale fundamental 2-groupoid has a special sort of section.
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Introduction

Given a topological space X , Henri Poincaré defined the fundamental group π1(X, x) of X

based at some point x of X . This is a very useful algebraic invariant of a space, and its consid-

eration was the first example of a transformation (functor) of type:

topology→ algebra

that defines the field of algebraic topology. It aids in the translation of geometric problems into

algebraic ones. For example Brouwer’s fixed point theorem, which states that every continuous

mapping from a disk to itself has a fixed point, becomes a simple calculation involving the

existence of a commutative diagram of finitely generated groups.

The fundamental group is the second in a sequence of algebraic structures

π0(X ), π1(X, x), π2(X, x), . . .

that describe X in algebraic terms. As it turns out, for “nice” spaces (path connected, locally

path connected and locally simply connected) the fundamental group of X depends only on a

category defined using X : the category of covering spaces of X , or equivalently, the category

L0(X ) of locally constant sheaves on X . This is because L0(X ) is a “Galois category” (as defined

in SGA1, [16]) with Galois group π1(X, x) in the sense that π1(X, x) “classifies” the objects of

L0(X ). To be precise, there is an equivalence of categories:

L0(X ) ' Rep(π1(X, x))

between L0(X ) and the representations of π1(X, x) in Set, i.e. sets equipped with an action by

π1(X, x) and equivariant maps.

Using these ideas, Alexander Grothendieck defined the étale fundamental group πét
1 (X, x) of

a scheme X (x is now some geometric point of X). He defined it as the “Galois group” of a

certain “Galois category”. In this setting the fundamental group classifies the finite étale covers
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of the scheme X . The category of finite étale covers of X can also be described as the locally

constant sheaves on X , for the étale site.

Once this algebraic invariant of schemes was set up, he was able to state the sections con-

jecture, a conjecture relating algebraic information encoded in π1(X, x) and rational points of

an anabelian scheme X . See Grothendieck’s letter to Faltings [17] for the first statement of

this conjecture. In this letter Grothendieck explains that there are schemes that belong to some

(loosely) defined class An, whose fundamental groups are non-commutative. These should in-

clude, in particular, the smooth proper, geometrically connected and hyperbolic algebraic curves

over some field k, that is finitely generated over Q.

More precisely, given an algebraic closure k̄ of k, there is a short exact sequence on pro-finite

groups:

1 // πét
2 (X̄ , x̄) // πét

1 (X, x)
st // Gk

// 1

where st is the image of the structure morphism X → Spec(k), and x is a geometric point of X .

Let Sec(πét
1 (X )) denote the set of splittings of this short exact sequence, modulo conjugacy.

Sections Conjecture. Let X be an anabelian variety. If k is finitely generated over Q, then the

natural mapping X (k) → Sec(πét
1 (X )) is a bijection.

The goal is thus the same as for topology: to translate algebraic-geometry problems, like the

existence of rational points, to purely algebraic ones, like the existence of splittings of a short

exact sequence of pro-finite groups.

One can ask:

Question. Can the section conjecture (and other “anabelian conjectures”) be generalised in

any way to a class of schemes strictly larger than An?

By only keeping track of the algebraic data contained within πét
1 (X, x) there is little hope;

indeed An is somewhat circularly defined to be maximal for these sorts of properties to hold.

What happens though, if an algebraic model of X that is more refined that πét
1 (X, x) is used?

A first question is to ask how to define π2(X ) of a scheme, an algebraic structure that would

be analogous to the second fundamental group of a topological space. One can try to mimic the
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previous definition, that is, to find a category of things defined over X that π2(X ) is meant to

classify. This turns out however to be misguided since the natural thing to classify is now the

2-category L1(X ) of locally constant stacks on X , and these are not encoded by π2(X ) for the

trivial reason that if you want to classify locally constant stacks you are also going to need to

classify locally constant sets (since sets can be construed as special sorts of groupoids) since the

latter are part of the former. The algebraic object needed should be a “π2” that still contains the

information held in π1.

Higher category theory provides such an object, Π2(X ), and the inclusion

L0(X )� L1(X )

is reflected by a decategorification

Π2(X ) → Π1(X ).

This is the fundamental 2-groupoid of X , and in [4] Waschkies and Polesello indeed prove that

(for X a topological space) it classifies the category L1(X ) of locally constant stacks on X :

L1(X ) ' Rep(Π2(X )) := [Π2(X ),Gpd].

This new algebraic invariant of X , Π2(X ), is a 2-category, which means that there are not

only objects and morphisms, but also 2-morphisms between the morphisms. Roughly, Π2(X )

can be defined as follows:

• objects are the points of X ,

• 1-morphisms are the paths in X ,

• 2-morphisms are equivalence classes (under higher homotopy) of homotopies between

paths. “Vertical composition” is concatenation of homotopies, and “horizontal compos-

ition” is like Godement composition of functors.

The story does not end there, there is a whole sequence of n-groupoids, with Πn (X ) classify-

ing locally constant (n − 1)-stacks on X . However the foundations are harder to deal with.
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The idea is then to define an analogous object Πét
n (X ) for a scheme X , with Πét

2 (X ) containing

in particular the data of Grothendieck’s πét
1 (X, x), and to ask questions about “higher sections

conjectures” involving these invariants.

Artin and Mazur defined and developed an étale homotopy theory of a scheme X in [13]. The

object h(X ) they define is a pro-object in the homotopy category of simplicial sets:

h(X ) ∈ pro(Ho(SSet)).

Later, Friedlander (in [21]) defined the notion of an étale topological type in the category

of pro-simplicial sets that induces Artin and Mazur’s étale homotopy type in the pro-homotopy

category.

In [18], Toën and Vezzosi define a similar pro-object, this time however indexed itself by

a higher-category (rather than a category as in the case of Artin-Mazur and Friedlander). The

construction is more natural and generalises Toën’s previous work in “Vers une interpretation

Galoisienne de la théorie de l’homotopie” [20], where he proves that locally constant ∞-stacks

on a (suitable) topological space are classified by functors from Π∞(X ) into ∞Gpd. In the last

section of [18], the authors give a sketch of a proof of this in the case of a Π∞ defined for a

general ∞-topos, and hint that their construction probably generalises that of Artin and Mazur

for schemes.

Here, we have decided to restrict our study to Π2(X ), trying to define this object directly

using the theory of locally constant stacks on X , but our construction follows the ideas that are

presented in [18]. It is our hope that this smaller and more manageable object would be more

amenable to direct calculations and study, than say Artin and Mazur’s h(X ).

After discussing the construction of Π2(X ) in the case of schemes, a type of higher sections

conjecture is studied for varieties that are not in An. These are the Severi-Brauer varieties. In

this case the following theorem is proved.
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0.1. Theorem. A Severi-Brauer variety X over a field k has a k-rational point if and only if the

structure morphism of the corresponding étale fundamental pro-2-groupoids

Π
ét
2 (X ) → Πét

2 (Spec(k)) ' BGal(k̄ |k)

has a weak pseudo-geometric section.

We hope that this will encourage number theorists to consider Πét
2 (X ) as a worthy generalisa-

tion of Galois groups, and an algebraic object worth studying for number-theoretic interests.

Structure of the thesis

In part 1, we recall some of the definitions we need from higher category theory and present

the definition of pro-2-groupoids. For pro-finite-2-groupoids, a representation theorem, similar

to the Yoneda lemma, is proved.

In part 2, we recall the basic definitions of stacks and locally constant stacks, since Π2(X )

will be defined by the universal property that it classifies these objects.

In part 4, we present a generalisation of the classical “category of elements” construction,

which is used in the proof that Π2(X ) exists. This is essentially the construction of the category

that will index the pro-object Π2(X ). The main theorem is that any functor F : Cop → 2Gpd,

where C is a 3-category, is a colimit of representable functors. In other words, there is a pro-

object that co-represents F.

In part 5 we give the definition and proof of existence of Π2(X ). The fact that it classifies

locally constant finite stacks on Xét is shown. We calculate Π2(X ) when X is a field, and show

that it is equivalent to the delooping of the absolute Galois group of X . We then study some

comparison theorems for XK → X , when X is a scheme over a field k and Spec(K ) → Spec(k)

an extension of fields. We extend the classification result so that we can also classify locally

constant A-gerbes on Xét, where A is a sheaf of abelian groups on Spec(k)ét.

Since the construction of Π2(X ) is functorial in X , for any morphism of schemes f : X → Y ,

there is a morphism of pro-finite 2-groupoids Π2( f ) : Π2(X ) → Π2(Y ). In part 6 we give
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a condition on morphisms of pro-finite 2-groupoids ϕ : Π2(X ) → Π2(Y ), that makes it more

likely that ϕ comes from an actual morphism of schemes.

In part 7 we explain how the structures that we have defined can be used to state conjectures

and study rational points on varieties.

Part 8 studies the special case of Π2(X ) when X is a Severi-Brauer variety. In this case we

prove that a pseudo-geometric section of the structure morphism Π2(X ) → BGk does give rise

to the existence of a rational point. This is done by using a pseudo-geometric section s as a

sort of stabiliser, allowing us to descend a trivialisation of a Chern class representing a certain

gerbe on X . This then proves that a certain line bundle is rational, and hence that a rational point

exists.

In part 9, we discuss how the notion of a pseudo-geometric notion might fit into a higher the-

ory, which is a more complete way of “preserving geometric structure” at the level of homotopy

types.
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Conventions.

• All fields considered will be of characteristic 0.

• The ring of integers is denoted Z.

• The field of rational numbers is denoted Q.

Part 1. Categories

1. 3-Categories

1.1. The material below uses the theory of higher categories. Higher categories are a gener-

alisation of categories where there are objects, morphisms between the objects, and morphisms

between the morphisms, and so on. Defining precisely what is meant by this has proved difficult,

and has even developed into a field of mathematics in its own right. An introduction by John

Baez to these ideas can be found in [1].

In [2], Baez and Dolan give a definition of weak n-categories based on opetopes and opetopic

sets. This definition was later refined by various people, including Claudio Hermida, Michael

Makkai and John Power. See for example [10].

In this text, we will only need 3-categories, and the various structures between them (func-

tors, natural transformations, etc.). These have been carefully defined using a more traditional

approach in [3], as bicategory enriched categories. These are essentially categories C in which

for each pair of objects A and B, there is a bicategory of morphisms C(A,B).

1.2. Definition. A 3-category is a tricategory as in [3]. See definition 3.1.1 of [3]. We will also

use the definition of functors, natural transformations, modifications, etc. as given in section 4

of [3]. The structure given by 3-categories and these transformations is referred to as 3Cat.

1.3. All 3-categories considered here will be of the weak (not strict) sort, and similarly for

functors between them. Furthermore, all limits and colimits, unless otherwise specified, will be

3-limits, that is, limits/colimits taken in a 3-category.
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1.4. Definition. A 2-category is a 3-category such that all 3-morphism hom-sets are singleton.

There is an equivalence (of 3-categories) between 2-categories, as just defined, and the clas-

sical definition of weak 2-categories, for example, bicategories. Similar definitions apply to

1-categories and 0-categories. The 3-category of 2-categories is denoted 2Cat.

1.5. Definition. A n-groupoid (for 0 6 n 6 3) is an n-category such that all i-morphisms

(1 6 i 6 n) are equivalences. The (n + 1)-category of n-groupoids is denoted nGpd.

1.6. Remark. Note that the (n + 1)-category nGpd has the following property: all the i-

morphisms, for i > 1, are equivalences. This is because the 2-morphisms (and above) are

defined by 1-morphisms in the n-groupoids under consideration, which are themselves equival-

ences. Such categories are called (n,1)-categories and are easier to manipulate than general

n-categories.

1.7. Notation. There are inclusion functors

Set ' 0Gpd� 1Gpd� 2Gpd� 3Gpd

whose notation will often be suppressed. Thus, given a 1-groupoid M and a 3-groupoid N , we

will freely speak of the 3-groupoid of functors M → N .

1.8. Notation. The symbol 1 denotes the terminal object in whatever category is under consid-

eration. Mostly it will refer to the trivial i-groupoid (0 6 i 6 3), which is the unique groupoid

(up to equivalence) with a unique k-morphism for all k, 0 6 k 6 i.

1.9. Notation. When defining a higher category explicitly by describing the i-morphisms, we

will use a numbered list, with the item {i} describing the i-morphisms. Note that the composition

for i-morphisms is defined, following Baez-Dolan, at the next level. For example, here is an

explicit definition of BZ:

{0} {∗}

{1} {a : ∗ → ∗ | a ∈ Z}

{2} {a ◦ b→ c | a + b = c}
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This should be read as follows:

{0} “There is a unique object named ∗”

{1} “For each element a of Z there is a morphism a : ∗ → ∗ names a”

{2} “The composite of a and b is a + b”, or more conceptually: “There is a unique 2-

morphism a ◦ b→ c exactly when a + b = c”

1.10. Notation. Given two categories M and N , the category of functors M → N will be

denoted NM , or [M,N]. Thus for example, the Yoneda embedding for a 2-groupoid M is in

[M, [Mop,Gpd]].

1.11. Definition. A finite i-category (0 6 i 6 3) is an i-category with a finite set of i-morphisms.

1.12. Definition. The 3-category of finite n-groupoids is denoted FinnGpd.

2. The Yoneda lemma

2.1. There is a proof of the Yoneda lemma for cubical 3-categories. A definition of cubical

3-categories and the proof of the Yoneda lemma for such 3-categories can be found in [3]. We

will only use the Yoneda lemma for the 3-categories 2Gpd and Fin2Gpd, which are cubical.

2.2. Lemma. For any cubical 3-category C, there is a functor

Y : C→ 3Cat(Cop,2Cat)

that is an equivalence of 3-categories of C onto the sub-3-category of 3Cat(Cop,2Cat) of rep-

resentable functors.

2.3. Let M be a 2-groupoid. Denote by [−,M] the functor

2Gpdop → 2Gpd

that M represents. For any two functors F,G : 2Gpdop → 2Gpd, the 2-category of morphisms

between them will be denoted [F,G].
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2.4. Let M be a 2-groupoid and F : 2Gpdop → 2Gpd a functor, then by the Yoneda lemma for

3-categories applied to 2Gpd, there is a natural equivalence

[[−,M],F] ' F (M).

In particular, if M and N are two 2-groupoids, there is a natural equivalence

[[−,M], [−,N]] ' 2Gpd(M,N ).

2.5. Similarly, the Yoneda lemma applied to the 3-category 2Gpdop gives a natural equivalence,

for any two 2-groupoids M and N :

[[M,−], [N,−]] ' 2Gpd(N,M).

This will be used in lemma 5.4 below, which is a sort of co-Yoneda lemma for pro-finite-2-

groupoids.

3. Limits and colimits of 2-groupoids

We recall here the basic definitions for limits of 2-groupoids. The definitions and proofs for

colimits are very similar to those of limits. The existence and theory of limits for 2Gpd is much

easier than a general 3-category.

3.1. Definition. Let D be a 3-category, and let F : Dop → 2Gpd be a functor. Define the functor

ˆlim
←−−

(F) : 2Gpdop → 2Gpd

by

ˆlim
←−−

(F)(T ) := [Dop,2Gpd](1,2Gpd(T,F (−)).

That is, ˆlim
←−−

(F) takes the 2-groupoid T to the 2-groupoid of natural transformations

1→ 2Gpd(T,F (−))

where
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• 1 is the terminal functor Dop → 2Gpd,

• 2Gpd(T,F (−)) is the functor

Dop → 2Gpd

d 7→ 2Gpd(T,F (d)),

that maps a groupoid d to the 2-groupoid of functors T → F (d).

3.2. Definition. Let D be a 3-category and F : Dop → 2Gpd a functor. A limit of F is a

2-groupoid L that represents ˆlim
←−−

(F).

3.3. Thus if L is the limit of F : Dop → Gpd, then for any 2-groupoid T , the functors

f : T → L

are equivalent to natural transformations

1→ 2Gpd(T,F (−)).

Such a natural transformation associates

• to any d ∈ D, a functor

f (d) : T → F (d),

• to any d12 : d1 → d2 in D, an equivalence

f (d12) : F (d12) ◦ f (d2) → f (d1),

• etc.

3.4. Lemma. The limit of a functor F : Dop → 2Gpd is, if it exists, unique up to equivalence.

Proof. Suppose two 2-groupoids are a limit of F. Then the functors 2Gpdop → 2Gpd that they

represent are both equivalent to ˆlim
←−−

F, and they are thus equivalent. Hence by the Yoneda lemma,

the two groupoids must be equivalent. �
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3.5. Lemma. Limits of 2-groupoids exist.

Proof. An easy calculation shows that the limit of F : Dop → 2Gpd is given by the following

2-groupoid:

[Dop,2Gpd](1,F),

that is, the 2-groupoid of natural transformations between the terminal functor 1 : Dop → 2Gpd

and F. �

3.6. Lemma. Given a 3-category D, forming the limit over functor F : Dop → 2Gpd is natural

in F, that is, produces a functor

lim
←−−
D

: [Dop,2Gpd]→ 2Gpd.

Proof. The functor lim
←−−D

is given by co-represented by 1 in [Dop,2Gpd]. �

4. pro-2-groupoids

We will need to use pro-2-groupoids in some of the constructions below. These are pro-

objects in the category of 2-groupoids. The main difference from pro-objects in the usual 1-

categorical sense, apart from taking values in a higher category, is that they can also be indexed

by higher categories.

4.1. Definition. Let C be a 3-category. A diagram in C is a functor A→ C for some 3-category

A. A finite diagram is a diagram A→ C where A is a finite category.

4.2. Definition. Let C be a 3-category and f : A→ C a diagram in C. A cone on f is an object

c of C and a morphism ∆(c) → f , where ∆(c) is the constant functor A→ C with value c.

4.3. Definition. A 3-category C is (finitely) cofiltered if every finite diagram in C has a cone.

4.4. Definition. The category of pro-2-groupoids, denoted pro2Gpd, is defined as the following

3-category:

{0} The objects are diagrams F : D → 2Gpd, where D is a small cofiltered 3-category.
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{1,2,3} Given objects F : D → 2Gpd and G : E → 2Gpd, the 2-category of morphisms F → G

is defined by the following limit-colimit construction. Consider the functor

E × Dop → 2Gpd

(e,d) 7→ 2Gpd(F (d),G(e))

Or, by Currying,

E → [Dop,2Gpd].

Composing this with the functor lim
−−→Dop

gives:

E // 2GpdDop
lim
−→Dop

// 2Gpd,

a functor over which we may now take the limit. The result is the 2-groupoid of morph-

isms between F and G. We will write this colimit-limit as

lim
←−−
e:E

lim
−−→
d:Dop

2Gpd(F (d),G(e)).

4.5. Before continuing with the definition, we describe some of the data included in a morphism

of pro-2-groupoids. Let A : DA → 2Gpd and B : DB → 2Gpd be two pro-objects. Then a

morphism f : A → B can be described by the following data (by virtue of being an object of a

filtered limit of 2-groupoids):

• For each b ∈ DB, some object

f (b) ∈ lim
−−→

a∈D
op
A

2Gpd(A(a),B(b)).

• The object f (b) can in turn be described by a pair (a(b), f (b,a(b))) where a(b) ∈ DA,

and f (b,a) is a functor

A(a(b)) → B(b)
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• The structure of the limit-colimit adds coherence morphisms to f (b,a). For example for

each morphism b12 : b1 → b2 in DB, there must be some a12 : a(b1) → a(b2) and some

(weakly invertible) natural transformation:

b12 ◦ f (b1,a(b1)) → f (b2,a(b2)) ◦ a12.

And similarly the 2-morphisms in DB add coherence structure to these, and so on.

4.6. To complete the definition, we need to show the existence of composition. We sketch the

proof of this. We need to define composition of morphisms in pro2Gpd. Given pro-2-groupoids:

A : DA → 2Gpd

B : DB → 2Gpd

C : DC → 2Gpd

and morphisms

A
f
// B

g
// C

We must define g f as an object of

lim
←−−
c:DC

lim
−−→
a:Dop

A

2Gpd(A(a),C(c)).

Defining data for g f is straightforward, we show here the first two steps:

• For each c ∈ DC ,

– There is some b(c) ∈ DB and a morphism

g(c) : B(b(c)) → C(c),

– There is, for b(c) ∈ DB some a(b(c)) in DA and a morphism

f (b(c)) : A(a(b(c))) → B(b(c)),
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– Composing gives us an object a(b(c)) of DA and a morphism

g f (c) := A(a(b(c)))
f (b(b))

// B(b(c))
g(c)

// C(c).

• For each morphism c12 : c1 → c2 in DC ,

– There is some morphism b(c12) : b(c1) → b(c2) and some g(c12) that is an equi-

valence:

B(b(c1)) C(c1)

B(b(c2)) C(c2)

g(c1)
//

g(c2)
//

B(b(c12))

��

C (c12)

��

g(c12)

{�

– There is some a(b(c12)) : a(b(c1)) → a(b(c2)) and some equivalence f (b(c12)):

A(a(b(c1))) B(b(c1))

A(a(b(c2))) B(b(c2))

f (b(c1))
//

f (b(c2))
//

A(a(b(c12)))

��

C (c12)

��

f (b(c12))

s{

– These compose to the required equivalence g f (c12):

A(a(b(c1))) B(b(c1)) C(c1)

A(a(b(c2))) B(b(c2)) C(c2).

g(c1)
//

g(c2)
//

B(b(c12))

��

C (c12)

��

f (b(c1))
//

f (b(c2))
//

A(a(b(c12)))

��
g(c12)s{

f (b(c12))

s{

One then has to show that the data thus obtained gives a well defined element of

lim
←−−
c:DC

lim
−−→
a:Dop

A

2Gpd(A(a),C(c)).
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Most of the work is done for us by the lower morphisms. It’s only for 2-morphisms of DC that

one has to check that the representative system of 3-morphisms picked in

lim
−−→
a:Dop

A

2Gpd(A(a),C(c))

obeys some coherence laws with respect to 3-morphisms in DC .

5. Pro-finite-2-groupoids

5.1. Definition. A pro-finite-2-groupoid is a pro-object in the 3-category of finite 2-groupoids.

Thus a pro-finite-2-groupoid is a pro-2-groupoid M : DM → 2Gpd such that for all d ∈ DM ,

M (d) is a finite 2-groupoid.

5.2. Let M and N be 2-groupoids, and consider the functors [M,−] and [N,−]:

2Gpd→ 2Gpd

that are co-represented by M and N respectively. Then recall that the (co)Yoneda lemma states

in particular that

[[M,−], [N,−]] ' [N,M]

that is, there is an equivalence between the morphisms of functors

[M,−]→ [N,−]

and the morphisms of 2-groupoids M → N . In the following we prove a similar statement

regarding pro-finite-2-groupoids.

5.3. Let M : DM → Fin2Gpd be a pro-finite-2-groupoid. Then we can define the functor

Fin2Gpd→ 2Gpd that it co-represents:

[M,−] : Fin2Gpd→ 2Gpd

T 7→ pro2Gpd(M,T ).
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Here, pro2Gpd(M,N ) is the category of morphisms of pro-2-groupoids M → N where N

is considered a constant pro-2-groupoid. Again, morphisms [M,−] → [N,−] are just natural

transformations. In this way we have extended the natural Yoneda embedding

Fin2Gpdop → [Fin2Gpd,Fin2Gpd]

to a functor

proFin2Gpdop → [Fin2Gpd,2Gpd].

The goal is to show that this extension also satisfies the Yoneda property.

5.4. Lemma. Let M and N be two pro-finite-2-groupoids. Then there is an equivalence of

categories

[[M,−], [N,−]] ' [N,M]

Proof. Let f : [M,−] → [N,−] be a natural transformation. In the Yoneda lemma we would

proceed to extract the M-component of f , however this does not exist here. However for each

d ∈ DM we may take the M (d)-component of f :

f (M (d)) : [M,M (d)]→ [N,M (d)],

which is natural in d. There is a natural morphism

id : M → M (d)

which is simply the projection of M onto its component M (d). Evaluating f (M (d)) at id

produces

gd := f (M (d))(id ) : N → M (d).

The morphism gd : N → M (d) is represented by an object of

lim
−−→

e∈D
op
N

[N (e),M (d)].
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Thus taken as a whole we get a system (gd | d ∈ DM ) that represents some object of

lim
←−−

d∈DM

lim
−−→

e∈DN

[N (e),M (d)],

that is, by the definition of a morphism of pro-2-groupoids, a morphism N → M . It is straight-

forward to check that this transformation is natural in f , that is, produces a functor

[[M,−], [N,−]] ' [N,M].

The inverse transformation simply takes f to the natural transformation [M,−]→ [N,−] that

is pre-composition with f at each component. �
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Part 2. Stacks and locally constant objects

5.5. A definition of Π2(X ) can be obtained if we have an understanding of the appropriate

locally constant objects that live over X .

Studying the locally constant functions on a topological space X informs us of the connectiv-

ity in X : a locally constant function must be constant over each connected component. Thus a

locally constant function X → S (to a set S) can be presented by giving an element a ∈ S for

each connected component of X . Thus the set of locally constant functions with values in S is

equivalent to the set of functions

Π0(X ) → S.

A locally constant sheaf F with values in a 1-category V on a topological space X has to be

constant over a cover (Ui → U | i ∈ I). We can thus present F, after restricting the cover to

simply connected connected pieces, by giving, for each i in I, an object Vi , and some coherence

conditions:

• over each double intersection Ui j = Ui ×X Uj , an isomorphism f i j : Vi → Vj ,

• such that, over each triple intersection Ui ×X Uj ×X Uk , gi k = gjk ◦ gi j .

In this case, the locally constant V-valued sheaves are equivalent to functors

Π1(X ) → V.

In our case we need the locally constant stacks. Being two levels higher than locally constant

functions, this will inform us of connectivity two levels higher than the connected components:

how paths are connected, and how paths-of-paths are connected. Thus, it will inform us of what

the homotopy 2-type is.

This was done for topological spaces by Polesello and Waschkies in [12] for locally relatively

2- connected topological spaces. They defined a “monodromy 2-functor”, and using this to

establish, for a 2-category V, an equivalence between the V-valued locally constant stacks on X ,

and the functor category [Π2(X ),V] (see Theorem 2.2.5 in [12]).
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We give the definitions that we need here, but refer the reader to [7] and [6] for details on

2-stacks.

6. Stacks

For the whole of this section, S will denote a site.

6.1. In this section we review the theory of stacks. Let V be a 2-category with all finite limits.

This will be the category of values for our stack. A typical choice for V is Gpd, the 2-category

of groupoids.

6.2. Definition. A pre-stack on S with values in V (or, a V-prestack) is a functor

Sop → V.

More generally, the 2-category of V-prestacks on S is the functor category [Sop,V]. Denote this

2-category by PStS (V).

6.3. Put simply, a stack (on S with values in V) is a prestack that preserves certain limits. This

is the basic idea of a sheaf/stack: you can construct the sections over an object U by limiting

over the values of the stack over a cover of U .

6.4. Definition. A prestack P on S with values in V is a stack if P commutes with filtered

2-limits indexed by coverings that are stable by finite intersections. The full subcategory of

PStS (V) whose objects are stacks is denoted StS (V).

6.5. Explanation. Consider a diagram d : I → S in the site S, where the family (d(i) | i ∈ I)

is a covering family for the site S of some object U. Assuming that S is stable under finite

intersection means that for any diagram

i1

ι1 ��

i2

ι2��
U
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in I, there is some j ∈ I such that d( j) is equivalent to the limit of

d(i1)

ι1 !!

d(i2)

ι2}}
U

in S.

Assuming that a diagram is filtered in Sop is the same as assuming that the opposite diagram

is cofiltered in S. The diagram d is cofiltered if I is cofiltered, that is, if each finite sub-diagram

of I has a cone.

Because S is a site, the colimit of d in S is U.

Thus the assumption above for some pre-stack P asks that for each diagram d as just de-

scribed,

P(lim
←−−

( Iop d // Sop )) ' P(U) ' lim
←−−

( Iop d // Sop F // V ).

6.6. Sheaves. We will explain how the above definition restricts to the definition of sheaves

when we consider Set as the value category. Let F be some pre-stack (of sets).

Let d be a diagram as in the previous sub-section. Then

lim
←−−

( Iop d // Sop F // V )

can be simplified as follows. Because this is a cofiltered limit, the elements of this limit are

families

(si ∈ F (i) | i ∈ I)

such that for every morphism i12 : i1 → i2 in I

F (i12)(si2 ) = s2.

Such families are called threads. Given any element s of F (U), we get a thread by restriction:

(s |d(i) | i ∈ I).
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A priori the condition above is stronger than the sheaf condition, since it asks that elements

of F (U) be threads, rather than families of elements

(si ∈ F (d(i)) | i ∈ I)

that agree on restriction to intersections. However this isn’t the case because triple intersections

don’t matter in this case. Indeed for any triple intersection of U1,U2,U3 → U, the diagram (for

example)

F (U123)

yy %%
F (U12)

%%

F (U12)

yy
F (U1)

is required to commute strictly (since Set is a 1-category), and so checking compatibility at triple

intersections becomes superfluous.

6.7. Covering limit diagrams of interest. Just like the condition for a presheaf (of sets) to be

a sheaf only relies on double-intersections, the definition of a stack of groupoids only relies on

triple intersections. Here is a more explicit description of how this works.

Consider a covering family ( f i : Ui → U | i ∈ I). For each pair (i, j) ∈ I2 there is a comma

object:

( f i/ f j )

qi j

��

pi j
// Ui

fi

��
Uj

f j

// U,

which is just the fibre product. For each triple (i, j, k) ∈ I3 we have double comma objects

( f i/ f j/ fk ), which is equivalent to:

( f i/ f j ) ×U j ( f j/ fk )
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for all other permutations of i, j, k. This provides the following projections:

ri jk : ( f i/ f j/ fk ) → ( f i/ f j ),

si jk : ( f i/ f j/ fk ) → ( f j/ fk ),

ti jk : ( f i/ f j/ fk ) → ( f i/ fk ).

This is all summarised in the following cubical diagram, in which each node is the limit of all

the nodes it is a source of.

( f i/ f j/ fk )

ri jk

��

si jk

��

ti jk

��
( f i/ f j )

pi j

��

qi j

��

( f i/ fk )

pik

��

qik

��

( f j/ fk )

p jk

��

q jk

��
Ui

fi

��

Uj

f j

��

Uk

fk

��
U

Let D( f i/ f j/ fk ) denote the above diagram in S, and L( f i/ f j/ fk ) the same diagram but with

the vertex U omitted.

The following lemma gives an alternate definition of a stack to the one above. It is equivalent

to the definition given in [6].

6.8. Lemma. Let F : Sop → Gpd be a prestack of groupoids. For each covering family ( f i : Ui →

U | i ∈ I), and each triple (i, j, k) ∈ I3, consider F(D( f i/ f j/ fk )), the application of F to

D( f i/ f j/ fk ), which is thus a diagram in V. We obtain a cone on the diagram F(L( f i/ f j/ fk ))
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with vertex F(U). The prestack F is a stack if, for each covering family ( f i | i ∈ I) and each

triple (i, j, k), F(D( f i/ f j/ fk )) exhibits F(U) as the limit of F(L( f i/ f j/ fk )).

7. The 2-stack of V-valued stacks

7.1. We recall here the construction of the 2-stack of stacks with values in a 2-category V that

has all small limits. For details on this construction, see Appendix B in [12], which itself also

refers to [7].

7.2. For any object U of S, we may consider the 2-category of V-valued stacks on U . Given

U1 → U2 in S, V-valued stacks on U2 restrict to V-values stacks on U1. This process makes the

system of V-valued stacks on U a pre-2-stack on the site S. Denote this pre-2-stack by StV(S).

7.3. Lemma. The pre-2-stack StV(S) is a 2-stack on S.

7.4. There is no way, for a general 2-category V, to construct a stackification functor that asso-

ciates to any pre-stack a corresponding stack. However for stacks with values in Gpd, which

we will be considering below (for example Gerbes), this is possible. For general V, we will be

giving a more general definition of “locally constant V-valued stack”.

7.5. Definition. A Gpd-valued stack F is constant if it is the stackification of a constant pre-

stack. A Gpd-valued stack F is locally constant if there is a cover (Ui | i ∈ I) in S such that the

restrictions F |Ui are constant stacks, for all i ∈ I.

8. Locally constant V-valued stacks

8.1. Locally constant objects over a space / site follow a hierarchical pattern. This goes as

follows:

• A locally constant function is a section of a constant sheaf;

• A locally constant sheaf is a section of a constant stack;

• A locally constant stack is a section of a locally constant 2-stack;

• etc.
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8.2. Let P be a pre-2-stack. A 2-stack F equipped with a morphism f : P → F is a stackification

of P if the following universal property is satisfied: for any stack T and any morphism g : P → T ,

g must factor through f up to a unique equivalence:

P
g
//

f
��

T

F.
∃!

??

This and more is summarised by the following proposition.

8.3. Proposition. The forgetful functor:

F : St2(S) → PSt2(S)

has a left adjoint functor

#: PSt2(X ) → St2(X ).

Proof. See Proposition 2.0.3 in [12]. �

8.4. Definition. The functor # is called stackification.

8.5. Definition. A constant pre-2-stack F : Sop → V is a pre-2-stack that is constant as a func-

tor. Sending a 2-category V to its corresponding constant pre-2-stack is a functor:

∆ : V→ PSt2(S).

8.6. Definition. A constant 2-stack is the stackification of a constant pre-2-stack. If V is a 2-

category, then the stackification of ∆(V) is a constant 2-stack and is referred to as the constant

2-stack with stalk V.

8.7. The composite functor

constS : 2Cat
∆ // PSt2(S)

# // St2(S)
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that sends a 2-category V to the constant 2-stack with stalk V is denoted constS . Recall that

Γ : St2(S) → 2Cat

denotes the global sections functor.

8.8. Definition. Let V be a 2-category with all small limits. An object of Γ(constS (V)) is called

a V-valued locally constant stack on S. More generally, the 2-stack constS (V) is the 2-stack of

locally constant V-valued stacks on S.

8.9. Notation. For V a 2-category with all small limits, the 2-stack of all locally constant V-

valued stacks on S will be denoted StV(S)L .

8.10. Remark. Note that StV(S)L is a 2-stack on S.

8.11. The next proposition gives an equivalent description of locally constant Gpd-stacks, which

furthermore reveals their structure.

8.12. Proposition. The 2-category of Gpd-valued locally constant stacks on S, as defined in

8.8, is equivalent to the 2-category of Gpd-valued stacks that are locally constant (definition

7.5).

Proof. See [12], remarks in section 2. �
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Part 3. Group actions

9. Group actions in 3-categories

9.1. Definition. Let G be a (discrete) group. Let M be an object of a 2-category C. An action

of G on M is a functor (between 2-categories):

ρ : BG → C

such that ρ(∗) = M .

9.2. In other words, an action of G on M is a morphism of pointed 3-categories

(BG,∗) → (C,M).

9.3. Definition. The 3-category of objects of C with an action by G is the category of functors

[BG,C].

9.4. Thus given a 2-groupoid M with an action by G, that is, a functor

ρ : BG → 2Gpd

we obtain, for each g ∈ G, a morphism

ρ(∗) = M
ρ(g)

// M = ρ(∗)

that we will simply denote g. So just like for actions of groups on sets, we have for each object

m ∈ M , and each g ∈ G, an object g · m = ρg (m). Given g and h in G, we obtain two

automorphisms of M:

M
gh

// M

M
h // M

g
// M
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however these are not required to to be equal. Rather, it is required that there exists a natural

transformation

ρ(g,h) : ρ(gh) → ρ(g)ρ(h).

At the level of objects, this means that for m ∈ M , the equation

g · (h · m) = gh · m

does not hold, but that there is a natural equivalence

g · (h · m) → gh · m.

allowing us to compare gh · m and g · (h · m). Applying the definition of a weak functor further

gives conditions on ρ(g,h). Furthermore, G-equivariant morphisms of 2-groupoids M → N are

required to map these natural equivalences in M to the corresponding ones in N (up to further

2-morphisms in N).
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Part 4. Grothendieck construction for 3-groupoids

9.5. Let C be a (3,1)-category. This part will look at functors of type

Cop → 2Gpd.

The main result of this part is that such functors can be reconstructed as a colimit of representable

functors. This is a direct generalisation of the Grothendieck construction for 1-categories.

10. Pointed 2-groupoids

10.1. Definition. The 3-category of pointed 2-groupoids is defined as the coslice (or “under-

category”) of 2Gpd under 1 (the trivial 2-groupoid); it is denoted (2Gpd)•.

10.2. More explicitly:

{0} The objects of (2Gpd)• are pairs (M0,m0) where M0 is a 2-groupoid and m is a morph-

ism

m0 : 1→ M0.

{1} The morphisms (M0
1 ,m

0
1) → (M0

2 ,m
0
2) are pairs (M1,m1) where M1 is a morphism

M1 : M0
1 → M0

2

and m1 is an equivalence

m1 : (M0
1 ◦ m0

1) → m0
2.

{2} The 2-morphisms (M1
1 ,m

1
1) → (M1

2 ,m
1
2) are pairs (M2,m2) with

M2 : M1
1 → M1

2

and m2 is an equivalence (abusing notation):

m2 : (m1
2 ◦ M2) → m1

1.
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{3} The 3-morphisms (M2
1 ,m

2
1) → (M2

2 ,m
2
2) are

M3 : M2
1 → M2

2

such that

m2
2 ◦ M3 = m2

1.

11. Grothendieck construction category

11.1. Definition. Let P be a functor Cop → 2Gpd. Define the Grothendieck construction of P

as the 3-category that is the opposite of the limit of the following diagram:

(2Gpd)•

��
Cop

P

// 2Gpd

where (2Gpd)• → 2Gpd is the natural projection. The Grothendieck construction of P is

denoted
∫

P.

11.2. By definition,
∫

P is equipped with a natural projection

πP :
∫

P → C.

11.3. Proposition. Any functor Cop → 2Gpd is a colimit of representable functors Cop →

2Gpd.

11.4. First we give the diagram over which a functor P : Cop → 2Gpd will be a colimit. Then,

we construct a colimiting cone over that diagram, which will simultaneously give an explicit

description of the objects and morphisms of
∫

P, while proving proposition 11.3. Note that the

explicit description of
∫

P is computed by applying the universal property of the limit defining∫
P to maps

R→
∫

P

where R is in turn
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• w0 = 1, the trivial 2-groupoid,

• w2, the walking morphism,

• w3, the walking 2-morphism, etc.

11.5. The colimit diagram. Let Y denote the Yoneda embedding

Y : C → [Cop,2Gpd].

We shall show that πP is a diagram in C that represents P. Let D denote the composite functor

Y ◦ πP: ∫
P

πP // C
Y // [Cop,2Gpd].

Then we shall show:

lim
−−→

D ' P.

by naturally constructing a cone

λ : D→ P.

11.6. Objects of
∫

P. An object of
∫

P (the data specifying it) is equivalent to a pair (C0,T0)

where C0 is an object of C and T0 is a morphism

1→ P(C0).

Which is equivalent to specifying an object T0 of P(C0). Given this object, the image D(C0,T0)

under D is the representable functor associated to C0: Y (C0). By the Yoneda lemma, a cone

component at D(C0,T0):

Y (C0) → P

is equivalent to specifying an object of P(C0), which is naturally chosen to be T0. That is, we

set λ(C0,T0) to be the image of T0 under the Yoneda equivalence.

11.7. Morphisms of
∫

P. The morphisms (C0
1 ,T

0
1 ) → (C0

2 ,T
0
2 ) are specified by pairs (C1,T1)

where

C1 : C0
2 → C0

1 ,
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and

T1 : P(C1) ◦ T0
1 → T0

2 .

This is equivalent to specifying a morphism in P(C0
2 ):

T1 : P(C1)(T0
1 ) → T0

2

for the objects

T0
1 ∈ P(C0

1 ) T0
2 ∈ P(C0

2 ).

Under the Yoneda equivalence, this provides the data for the cone-component

λ(C1,T1) : λ(C0
2 ,T

0
2 ) ◦D(C1,T1) → λ(C0

1 ,T
0
1 ).

11.8. 2-Morphisms of
∫

P. The 2-morphisms (C1
1 ,T

1
1 ) → (C1

2 ,T
1
2 ) are pairs (C2,T2) where

C2 is a 2-morphism

C1
2 → C1

1

and T2 is (suppressing lower morphisms):

T2 : P(C2) ◦ T1
1 → T1

2 .

This is equivalent to specifying a 2-morphism in P(C0
2 ):

T2 : T1
2 ◦ P(C2)(T0

1 ) → T1
1 .

Under the Yoneda lemma equivalence, this provides data for the cone-component λ(C2,T2).

11.9. 3-Morphisms of
∫

P. The 3-morphisms (C2
1 ,T

2
1 ) → (C2

2 ,T
2
2 ) are specified by pairs

(C3,T3) where C3 is a morphism

C2
2 → C2

1

and T3 is, suppressing lower morphisms,

T3 : P(C3) ◦ T2
1 → T2

2 .
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This 3-morphism provides the data, under the Yoneda equivalence for the cone-component

λ(C3,T2
1 ).

11.10. The properties required for λ to be a universal cone are derived from the composition

properties in
∫

P. We give an example calculation. The other ones are very similar.

Consider two composable 1-morphisms of
∫

P:

(C1
1 ,T

1
1 ) (C1

2 ,T
1
2 )

with composite:

(C1
12,T

1
12)

between the objects:

(C0
1 ,T

0
1 ) → (C0

2 ,T
0
2 ) → (C0

3 ,T
0
3 ).

Then because P is a functor there is an equivalence

a : P(C1
2 )(P(C1

1 )(T0
1 )) → P(C1

2 ◦ C1
1 )(T0

1 ).

By definition of composition in
∫

P, there is an equivalence

T1
12 ◦ a → T1

2 ◦ P(C1
2 )(T1

1 )

which, under the Yoneda lemma equivalence, provides the equivalence

λ(C1
1 ,T

1
1 ) ◦ λ(C1

2 ,T
1
2 ) → λ(C1

12,T
1
12).
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Part 5. The fundamental 2-groupoid of a scheme

In this part we define Π2(X ) for X a scheme and then prove some fundamental properties

about this pro-finite-2-groupoid.

12. Shape of a scheme

12.1. Context. For the whole of this section, we will consider:

• a field k;

• a scheme X over the field k;

• the étale site Xét of X .

12.2. Shape functor of Xét. Consider the functor

sX : 2Gpd
constXét // St2Gpd(Xét)

Γ // 2Gpd

that is the composite of

• constX : the functor that associates to any 2-groupoid M the constant stack on Xét with

stalk M . This is the 2-stackification of the constant pre-2-stack with constant value M .

• Γ: the global sections functor, which associates to any object F of St2Gpd(Xét) the 2-

groupoid F(X ).

The functor sX is called the shape functor of X .

12.3. Proposition. The shape functor sX preserves finite limits.

Proof. Indeed Γ (being a geometric morphism of (3,1)-topoi) preserves all limits, and constX is

a left-exact functor, being the left-adjoint component of Γ. �

12.4. Basic idea. The basic idea is the following. The shape functor sX is a functor of type

2Gpd→ 2Gpd,

and at a 2-groupoid T it is computed by Γ(constXét (T )), which by 8.12 is the 2-groupoid of

locally constant T-valued stacks on Xét.
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Thus if it were possible to associate to the scheme X some 2-groupoid MX that co-represented

locally constant stacks on X , then that MX would co-represent sX as a functor 2Gpd→ 2Gpd.

This isn’t the case, but by the Grothendieck construction for 2-groupoids, we can obtain a sort

of approximation of this: the shape functor sX is a colimit of representables. The fundamental

2-groupoid of X is then the pro-2-groupoid that co-represents sX . The only concern is size

issues, which we resolve by restricting the diagram D to 2-groupoids of a certain size.

12.5. Definition. Apply the Grothendieck construction to the functor

sX : (2Gpdop)op → 2Gpd

The resulting Grothendieck construction has a natural projection

πsX :
∫

sX → 2Gpdop

Let A be the sub-category of
∫

sX consisting of objects T such that πsX (T ) is a finite 2-groupoid

(finite number of 2-morphisms). Then denote the composite

Aop // // (
∫

sX )op
πsX // 2Gpd

by Πét
2 (X ). This is the definition of the étale 2-groupoid of X .

12.6. Proposition. For all schemes X, Π2(X ) is a pro-finite-2-groupoid.

Proof. To prove this claim we need to show that A is cofiltered. That is, we need to show that

any finite diagram in A has a cone.

Let D : F →
∫

sX be a finite diagram in
∫

sX . We will use the following notation: for an

i-morphism f of F, denote by (Ci
f
,T i

f
) the object D( f ) of

∫
sX .

Composing D with πsX (the natural projection to 2Gpdop) gives a finite diagram in 2Gpdop

whose cocones are the cones of the corresponding opposite diagram E in 2Gpd. Let L := lim
←−−

(E)

be the limit of this diagram, thus also a cone. Composing with sX gives us a cone in 2Gpd which

is also a limit, since sX preserves finite limits.
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For any i-morphisms f in F, the system (T i
f
| 0 6 i 6 3) produces a cone on E with vertex

1, and hence, by L being the limit of E, an object of sX (L), thus defining an object of
∫

sX . By

construction this is a cocone for D in
∫

sX . This proves that
∫

sX is cofiltered.

Note that the limit L of E is a finite 2-groupoid whenever the diagram E is only composed of

finite 2-groupoids, and thus A is cofiltered. �

12.7. Essential property of Π2(X ). Recall that the essential property of the pro-finite étale

fundamental group of Grothendieck is that it classifies locally constant finite sheaves on X .

Classically, this is stated as a correspondence between the finite étale covers of X and continuous

actions of πét
1 (X, x) on a finite sets. If we consider a pro-finite group to be a pro(finite group),

that is, a pro-object in the category of finite groups, then the category of finite sets equipped with

a continuous action by πét
1 (X, x) is equivalent to the category of morphisms of pro-objects

Bπét
1 (X, x) → FinSet,

where FinSet is considered to be a constant pro-object. A similar property holds more generally

for Π2(X ).

12.8. Theorem. For any finite 2-groupoid C, there is an equivalence of 3-categories between

the category of locally constant C-valued stacks on Xét and the 3-category of morphisms of

pro-2-groupoids

Π2(X ) → C.

This equivalence is natural in C.

Here C is considered to be a constant pro-2-groupoid.

Proof. By Proposition 8.12 and the definition of sX , sX (C) is equivalent to the category of

locally constant C-valued stacks on Xét.

By Proposition 11.3, sX (C) is equivalent to

lim
−−→

(
∫

sX
πsX // 2Gpdop Y // 2Gpd2Gpd. )
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However for any object (M,T ) of
∫

sX , that is, any 2-groupoid M and any locally constant

stack with values in M: T ∈ sX (M), the corresponding representable functor 2Gpd→ 2Gpd is

2Gpd(M,−). The value at C is this functor is category of functors

M → C.

Since C is a finite 2-groupoid, there is a finite groupoid M0 and an epi M → M0 such that any

functor M → C factors as

M → M0 → C.

Thus, pre-composing with the inclusion A� (
∫

sX ) will not alter the colimit. Notice that this

is the definition of the hom-3-category of morphisms of pro-2-groupoids

Π2(X ) → C

because, since C is constant, this amounts to the colimit (over the opposite of the diagram giving

Π2(X )) of the hom-3-categories between the components of Π2(X ) and C. �

12.9. Notation. Given a locally constant C-valued stack F on Xét, the corresponding functor

Π2(X ) → C will be denoted Π2(F).

12.10. Proposition. For a scheme X, the equivalence class of the pro-finite-2-groupoid Π2(X )

is uniquely determined by the property it satisfies in Theorem 12.8.

Proof. Indeed Π2(X ) is a pro-finite-2-groupoid that co-represents sX . If T was another pro-

finite 2-groupoid with the same property, then for any finite 2-groupoid C, there would be an

equivalence that is natural in C:

[T,C]→ [Π2(X ),C].

Therefore, by lemma 5.4, there is an equivalence of pro-finite-2-groupoids

T → Π2(X ).

�



41

12.11. Proposition. The étale fundamental-2-groupoid construction is a functor from the cat-

egory of schemes to the category of pro-2-groupoids.

Proof. The hard part was the existence of the fundamental 2-groupoid. Since Π2(X ) is defined,

for X a scheme, by a universal property, the functoriality is relatively straightforward. Indeed

given any morphism of schemes X → Y , the inverse image 2-stack functor takes the constant 2-

stack constY (C) to constX (C), and therefore, the inverse-image for stacks takes locally constant

C-valued stacks on Y to locally constant C-valued stacks on X :

f −1
C StC(Yét)L → StC(Xét)L

Because of constX is a functor, f −1
C

is functorial in C, that is, is a natural transformation. Thus

we have a natural transformation of representable functors

[Π3(Y ),−]→ [Π2(X ),−]

of type Fin2Gpd → 2Gpd that are co-represented by Π2(X ) and Π2(Y ) respectively. Thus, by

lemma 5.4, this corresponds to a morphism of pro-finite-2-groupoids:

Π2(X ) → Π2(Y ).

�

12.12. Remark. By the above proof we also deduce that given a morphism of schemes f : X →

Y , the resulting morphism of pro-2-groupoids Π2( f ) has the following property: given a locally

constant C-valued stack F on Yét, represented by:

Π2(F) : Π2(Y ) → C

then the composite

Π2(X )
Π2 ( f )

// Π2(Y )
Π2 (F)

// C

represents the locally constant stack f −1F on X .
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12.13. Lemma. The étale fundamental groupoid of a scheme X is uniquely determined by the

property that the category of locally constant finite stacks in groupoids is equivalent to the cat-

egory of functors

Π2(X ) → FinGpd

Proof. A reformulation of Cayley’s theorem for finite groups says that for any finite groupoid

M , M is equivalent to a sub-groupoid of the core of finite sets:

M � core(FinSet).

(The core of a category is the groupoid obtained by removing all non-invertible morphisms.)

A generalisation is true for 2-groupoids: for any finite 2-groupoid M , M is equivalent to

a sub-2-groupoid of the core of the 2-category of finite groupoids. We construct the functor

M → FinGpd that gives such an equivalence. First, consider the case when M is connected.

We may therefore assume that M has a single object m0. Then

[M (−,m0),M (−,m0)] ' M (m0,m0)

by the Yoneda lemma. Furthermore since M has a single object, [M (−,m0),M (−,m0)] is a sub-

2-groupoid of [M (m0,m0),M (m0,m0)]. In general any finite 2-groupoid M is a finite co-product

F1 + · · · + Fn of connected finite 2-groupoids Fi . Each Fi is equivalent to a sub-2-groupoid of

FinGpd. Choosing distinct representatives of equivalence classes of 1-groupoids if necessary,

one can make sure the morphisms Fi � FinGpd do not overlap. In this way we can obtain an

equivalence of M and a sub-2-groupoid of FinGpd.

Furthermore, FinGpd is the colimit of the diagram of inclusions of all its finite sub-2-

groupoids.

So pick a representative Mi , i ∈ I, of each equivalence class of finite 2-groupoids. Then for

each Mi , pick a sub-2-groupoid of FinGpd that it is equivalent to:

s(Mi )� Fin2Gpd.
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Then it is enough to apply 12.10 to these s(Mi ). �

13. Fields

13.1. Defining the absolute Galois group Gk of a field was in essence the first definition of

πét
2 (X ) for the special case where X is the spectrum of a field. We get a (connected) pro-finite

groupoid by taking the delooping of BGk . Fields are actually “étale homotopy 1-types”, in that

they don’t actually contain any higher-homotopical data. In the following we will show this at

least at level 2, that is, we will show that BGk ' Π2(Spec(k)).

13.2. Let G be a pro-finite group. Recall that [BG,Set] is equivalent to the category of sets with

a continuous G-action. This category can be equipped with the structure of a site by considering

coverings (Ui → U | i ∈ I) to be families of G-finite sets such that lim
−−→i∈I

Ui → U is surjective.

13.3. Lemma. Let G = (G(i) | i ∈ I) be a pro-finite group with surjective transition maps,

indexed by some category I. Let C be a finite 2-groupoid. Then there is an equivalence of

categories between the category of locally constant C-stacks on [BG,Set] and [BG,C].

Proof. Let i be an object of I. Consider the Yoneda embedding

Y : BG(i)� [BG(i)op,Set],

and let m(i) denote Y (∗i ) where ∗i is the unique object of BG(i). By the Yoneda lemma, each

m(i) is a G(i)-set such that its group of automorphisms is isomorphic to G(i). Now each m(i)

defines an object of [BG,Set], and so the system (m(i) | i ∈ I) defines a pro-object M in

[BG,Set], which has an automorphism pro-group isomorphic to G.

Any C-valued stack on [BG,Set] thus produces, by taking its value at M , a pro-object in C

with an action by G.

Let S be a locally constant C-valued stack on [BG,Set]:

S : [BG,Set]op → FinGpd.
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Then because S is locally constant, there is a cover Uj such that S is constant over each Uj . We

may without loss of generality assume that each Uj is a connected G-set. Each Uj is therefore

covered by m(i( j)) for some i( j) ∈ I. Since I is cofiltered, S is therefore constant over some

m(i0), i0 ∈ I. We obtain in this fashion an object of C: S(m(i0)) with an action by G(i0) (since

m(i0) has automorphism group G(i0)), and hence an action by G. This is equivalent to an object

of [BG,C].

Conversely given an object M of C with an action by G, this action must factor through some

component of G:

BG → BG(i0) → C

for some i0 ∈ I.

We can then construct a locally constant C-valued stack on [BG,Set] using the covering

m(i0) → 1

of m(i0) of the terminal object, by giving the value at m(i0), which is M , and descent data. In

this case the descent data is equivalent to the action of G(i0) on M . �

13.4. Proposition. For any field k,Π2(Spec(k)) ' BGk , where Gk is the absolute Galois group

of k.

Proof. Recall that the étale site of a scheme is equivalent to the canonical site on the category of

Gk -sets:

Spec(k)ét ' [BGk ,Set].

Therefore, for some finite 2-groupoid C, the category of locally constant C-stacks on Spec(k)ét

is equivalent to [BGk ,C]. Thus by 12.10

Π2(Spec(k)) ' BGk .

�
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13.5. Remark. For any scheme X over a field k, there is a structure map X → Spec(k) and

thus, by functoriality of Π2, a morphism of pro-2-groupoids

Π2(X ) → Π2(Spec(k)) ' BGk .

14. Relative schemes

14.1. Lemma. Let X be a scheme over a field k. Let K |k be a finite Galois extension of k, and

let XK := X ×Spec(k ) Spec(K ). Then there is an action of GK |k on Π2(XK ).

Proof. For any g ∈ GK |k , there is a corresponding morphism of schemes

Spec(K ) → Spec(K )

that is over Spec(k). This lifts to the fibre product to a morphism of schemes

fg : XK → XK

over XK , and of course this is functorial, that is, this provides an action of GK on the object

XK → X in the category of schemes over X . Since Π2 is a functor, the images Π2( fg ) of these

morphisms give an action of GK |k on Π2(XK ) (again over Π2(X )). �

14.2. Lemma. For any scheme X over a field k, and any finite Galois extension K |k, the cat-

egory of locally constant C-valued stacks on X is equivalent to the category of GK |k -morphisms

Π2(XK ) → C.

In this statement, C is equipped with the trivial GK |k -action.

Proof. Let XK := X ×Spec(k ) Spec(K ). The morphism

XK → X

is étale, and can be used to compute, by using descent in the 2-stack of locally constant C-valued

stacks, the category of locally constant stacks on X by Galois descent of locally constant stacks
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on XK . Indeed the pre-2-stack of locally constant stacks on X is a stack, and applying the

stack-condition on the cover XK → X produces the familiar descent category: locally constant

stacks on X can be described by the data of a locally constant stack F on XK , and a collection

of equivalences

(αg : g−1F → F | g ∈ GK |k )

etc. In this case, the morphisms g−1F → F correspond to

Π2(F) ◦ Π2( fg ) → Π2(F),

by 12.12. Thus this descent category is equivalent to the category of GK |k -equivariant morph-

isms Π2(XK ) → C, for the action of GK |k on Π2(XK ). �

14.3. Lemma. Let K |k be a finite Galois extension. Then the following is a fibred product:

BGK

zz ""
BGk

$$

1

||
BGK |k .

Proof. In the above diagram, BGK being equivalent to the homotopy fibre of BGk → BGK |k is

equivalent to GK being the kernel of Gk → GK |k . �

14.4. Lemma. Let X be a scheme over k and let K |k be a finite Galois extension. Then the

following is a fibred product:

Π2(XK ) //

��

BGK

��
Π2(X ) // BGk
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Proof. Two out of the three rectangles are fibred products in the following diagram:

Π2(XK ) //

��

BGK

��

// 1

��
Π2(X ) // BGk

// BGK |k

and so

Π2(XK ) //

��

BGK

��
Π2(X ) // BGk

is also a fibred product. �

15. Gerbes

15.1. In this section we study how Π2(X ) classifies A-gerbes, for some sheaf of groups A on

Spec(k). The basic reference for the theory of gerbes is [8]. A more modern treatment is given

in [7] and [6].

15.2. Notation. If M is a groupoid, Aut(M) denotes the sub-2-category of Gpd composed of

the object M and the auto-equivalences of M .

15.3. Lemma. Let X be a scheme over a field k. Let A be a finite abelian group (no action by

Gk ). Then the category of A-gerbes on X is equivalent to the category of functors

Π2(X ) → Aut(B1 A).

Proof. In this case A is constant over X . The 2-category of A-gerbes on X is the 2-category of

stacks that are locally equivalent to the stack of A-torsors. The stack of A-torsors is equivalent

to const(BA). Thus choosing a cover over which the A-gerbe is trivial, we get a “cocycle with

values in Aut(const(BA)) ' const(Aut(BA)). That is, a locally constant stack with values in

Aut(BA). We make this more precise.

Let P be an A-gerbe. Following Breen in [6], we present P using the so-called “semi-local

description” (see section 4 of [6]) over a cover (Ui | i ∈ I) such that over each Ui we have an
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equivalence

ϕi : P |Ui ' Tors(A) |Ui .

Choosing quasi-inverses of the ϕi , we get

• an induced family of equivalences

ϕi j := ϕi |Ui j ◦ ϕ
−1
j |Ui j : Tors(A) |Ui j → P |Ui j → Tors(A) |Ui j

above each Ui j .

• Natural transformations ϕi jk over each Ui jk :

Tors(A) |Ui jk
Tors(A) |Ui jk

Tors(A) |Ui jk

ϕ jk

??
ϕi j

��

ϕik

//

ϕi jk

��

• That satisfy the following coherence condition (commuting diagram):

i

j k

l

ϕi j

��

ϕ jk

//

ϕik

��

ϕ j l

��
ϕkl

��

ϕil

��

(where each of the vertices i, j, k, l is Tors(A) |Ui jkl
, and each face with vertices

{x, y, z} ⊂ {i, j, k, l} is the 2-morphism ϕxyz ).

However the stack of A-torsors is equivalent to the stack constXét (BA) and for each U , the

equivalences

const(BA) |U → const(BA) |U

are equivalent to equivalences of BA, that is, morphisms in Aut(BA). Thus the presentation

given above is simply descent data for a global section of constXét (Aut(BA)). Thus the A-gerbes
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are equivalent to locally constant Aut(BA)-valued stacks on Xét. By the universal property of

Π2(X ), therefore, they are equivalent to functors Π2(X ) → Aut(BA). �

15.4. Lemma. Let X be a scheme over a field k. Let A be a finite Gk -module. Let K |k be a

finite Galois extension such that A is a trivial GK -module. Then the category of A-gerbes over

Xét is equivalent to the GK |k -action morphisms

Π2(XK ) → Aut(BA).

Proof. The sheaf of abelian groups A on Spec(k) pulls back to a sheaf of abelian groups on

X . The A-gerbes on Xét form a 2-stack, so we may apply the descent condition over the cover

XK → X , that is, A-gerbes over X may be defined via Galois descent of A-gerbes over Xk .

Because the sheaf of abelian groups A is constant over Spec(K )ét, the same is true for the

pull-back to XK , and so we may apply lemma 15.3, so that the A-gerbes over XK are equivalent

to morphisms

Π2(XK ) → Aut(BA).

Applying Galois descent under the action of the group GK |k implies that the A-gerbes over X

are equivalent to the GK |k -morphisms

Π2(XK ) → Aut(BA).

�
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Part 6. Pseudo-geometric functors

15.5. Context. Consider the following setting for this section:

• k is a field.

• k̄ is an arbitrary algebraic closure of k.

• X is a scheme over k.

• X̄ := X ⊗k k̄.

16. Chern classes of line bundles

16.1. Line bundles, which are structured sheaves on the étale topology, are not locally constant

in any way. Thus Π2(X ) (or any higher variant) does not transport all of the underlying data

contained within them (see part 9 for a more on this). An approximation is however achieved

via the Chern class, which can be transported along morphisms of Π2.

16.2. Let L be a line bundle on X . The (étale) stack of line bundles on X is equivalent to the

stack of Gm-torsors on X , thus we may consider L to be a Gm-torsor. Consider, for some n > 1,

the Kummer short exact sequence Kn of sheaves of abelian groups on Xét:

µn // Gm
mn // Gm

Here µn is the sheaf of n-th roots of unity, and mn is the n-th power morphism.

Using this sequence, L produces, for all n > 0, a µn-gerbe. This gerbe is represented by

a stack on Xét: it is the stack cn (L) that associates to any étale cover U of X the groupoid

cn (L)(U):

{0} objects are pairs (M,a) where

– M is a Gm-torsor on Xét;

– a : M ⊗n → L is an isomorphism of Gm-torsors;
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{1} Morphisms (M1,a1) → (M2,a2) are morphisms f : M1 → M2 of Gm-torsors, such that

the following diagram commutes:

M ⊗n
1

f ⊗n

//

a1 !!

M ⊗n
2

a2}}
L.

16.3. Consider the category
−→
N>1:

{0} objects are integers > 1,

{1} f : a → b exists if and only if b divides a.

For each morphism n → m in
−→
N>1, since m |n there is some l such that n = ml. Then mm ◦ml =

mn and there is morphism of short-exact sequences Kn → Km:

µn //

��

Gm
mn //

ml

��

Gm

id
��

µm // Gm
mm // Gm.

Thus there is a functor from
−→
N>1 to the category of short exact sequences of sheaves on X .

The system (µn | n ∈
−→
N>1) is a pro-object in the category of abelian sheaves on Xét, and the

system (cn (L) | n ∈
−→
N>1) produced above forms a system of µn-gerbes compatible with this

pro-object. (One could define the notion of an Ẑ(1)-gerbe over Xét, but this is enough for our

purposes.)

16.4. Definition. For X a scheme and L a line bundle on X , the system (cn (L) | n ∈
−→
N>1) will

be denoted ĉX (L), and called Chern class of L. The n-component of ĉX (L) will be called the

modulo n Chern class of L and denoted cX (L)n .
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17. Pseudo-geometric morphisms

17.1. Suppose X and Y are two schemes over k. The étale fundamental 2-groupoids are thus

equipped with structure morphisms to BGk . Let

ϕ : Π2(X ) → Π2(Y )

be a morphism of pro-2-groupoids over BGk . We would like to discuss a property of ϕ that

imposes some geometric rigidity, which is necessary if ϕ is to lift to a geometric morphism

X → Y . In a section that follows we will show that this property is also sufficient for the special

case of morphisms Spec(k) → X of Brauer-Severi varieties.

17.2. Suppose first that ϕ := Π2( f ) does come from a geometric morphism f : X → Y . Let n ∈

N>1. Then the modulo n Chern class of L is represented by some GK |k -equivariant morphism

cn : Π2(XK ) → Aut(Bµn )

for a suitable extension K |k of k.

Consider the composite cn ◦ ϕ, which is a GK |k -equivariant morphism

Π2(XK )
ϕ
// Π2(YK )

cn // Aut(Bµn )

of the type that would represent a modulo n Chern class of a line bundle on X . Because in this

case ϕ does come from a geometric morphism f , we have that cn ◦ ϕ represents the line bundle

f ∗L.

17.3. Definition. Let X and Y be schemes over k and ϕ : Π2(X ) → Π2(Y ) a morphism over

B1Gk . We say that ϕ is pseudo-geometric if for each line bundle L on Y , there exists some line

bundle L′ such that for each n ∈ N>n there is an equivalence

cY (L)n ◦ ϕ ' cX (L′)n .

17.4. Remark. Because of Hilbert’s theorem 90, a section of the structure morphism Π2(X ) →

BGk is pseudo-geometric if and only if it transports Chern classes of line bundles to trivial
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morphisms

BGk → Aut(Bµn ).

17.5. Remark. For anabelian varieties X and their étale fundamental groups πét
1 (X, x̄), and the

special case of morphisms of varieties

Spec(k) → X,

the definition of pseudo-geometric functor reduces to the definition of a “good morphism”, as

introduced by Mohamed Saidi, see definition 1.4.1 of [4], for which it has been useful in studying

variants of the sections conjecture (see also [5]). It is therefore not surprising that this is also a

useful notion when considering Π2(X ).
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Part 7. Conjectures

18. Structure

18.1. Let X be a scheme over a field k. Then the structure morphism st : X → Spec(k) produces

a morphism of pro-finite-2-groupoids:

Π2(st) : Π2(X ) → Π2(Spec(k)) ' BGk .

A rational point s of X , that is, a section of the structure morphism:

Spec(k)

id %%

s // X

st{{
Spec(k),

produces, by functoriality of Π2, a section of Π2(st):

BGk

id ##

Π2 (s)
// Π2(X )

Π2 (st)zz
BGk .

18.2. Definition. For a scheme X over a field k, let Secét
2 (X ) denote the set of equivalence

classes of sections of Π2(st).

19. Conjectures

19.1. There is thus a natural map

r2 : X (k) → Secét
2 (X )

from the set of rational points of X into Secét
2 (X ). The same definition applied to Π1(X ), which

is equivalent, in the case of connected schemes, to Bπét
1 (X, x), where πét

1 (X ) is Grothendieck’s
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étale fundamental group, produces Secét
1 (X ). There is a commutative diagram

X (k)
r2 //

r1 $$

Secét
2 (X )

��

Secét
1 (X ).

Grothendieck’s famous “sections conjecture” postulates that r1 is in fact a bijection in the case

that X is an “Anabelian” variety. Since Secét
2 (X ) is more refined, we can ask if there is a class of

schemes strictly larger than the Anabelian schemes for which r2 is a bijection.

19.2. Definition. For X a scheme over k, let Secét
2 (X )g denote the subset of Secét

2 (X ) composed

of equivalence classes of sections of Π2(st) that are furthermore pseudo-geometric.

19.3. Because rational points are actual morphisms of schemes, they pull-back line bundles, and

so for any rational point s, Π2(s) is pseudo-geometric. Therefore r2 factors through the inclusion

Secét
2 (X )g � Secét

2 (X ), and so Secét
2 (X ) is a more refined approximation of X (k). In the case

of hyperbolic curves, this subset has already been studied in the context of the étale fundamental

group of X , see for example [4].

19.4. It is clear that in general, the set Secét
2 (X )g has to be further refined if one is to hope to

obtain a bijection

X (k) → Secét
2 (X )g .

Indeed for example the affine scheme A1
k

has plenty of rational points in A1
k

(k) but

Π2(A1
k ) ' BGk ,

and so Secét
2 (A1

k
)g is singleton. However we can at least obtain a criterion for the existence of a

rational point.

19.5. Conjecture. There is a large class of schemes X such that X has a rational point if and

only if Secét
2 (X )g is non-empty.
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19.6. Of course if one defined higher fundamental n-groupoids of schemes, then the set Secét
n (X )

of sections of the structure morphism Πn (X ) → BGk is refined even further, and the class of

schemes for which the criterion works could be further enlarged. This would culminate into the

fundamental∞-groupoid of X , giving rise to Secét
∞(X ).

19.7. In the following section cronjecture 19.5 is proved for the class of Severi-Brauer varieties.
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Part 8. Étale homotopy sections of Severi-Brauer varieties

20. Severi-Brauer varieties

20.1. A Severi–Brauer variety over a field k is an algebraic variety X which becomes isomorphic

to a projective space over an algebraic closure of k.

In dimension one, the Severi–Brauer varieties are conics. The conic with equation

z2 = ax2 + by2

splits, that is, is isomorphic to the projective line over k, if and only if it has a rational point (a

k-point).

Since Severi-Brauer varieties become isomorphic to projective space after an extension of

scalars, they can be defined and studied purely in terms of Galois descent.

The following material is all classical and can be found in [14].

20.2. Definitions. A Severi-Brauer variety of degree n > 1 over a field k is a variety P such

that there exists an isomorphism

Pk̄ ' Pn−1
k̄

where k̄ is some algebraic closure of k.

For example a Severi-Brauer variety of degree n for a finite field extension K |k is a variety P

over k such that P ⊗k K ' Pn−1. In this case the variety P is said to be split by K . Of course,

Pn−1 is itself a Severi-Brauer variety of degree n, and it is said to be trivial.

20.3. Definition. Let X be a variety over a field k and let K be a Galois extension of k. A line

bundle on XK := X ⊗k K is rational if it descends to a line bundle on X .

20.4. When X = Pn−1, we have PicX ' Z, and this is generated by OPn−1 (1). Therefore

extension of scalars from k to K is an isomorphism

Pic(X ) ' Pic(XK ).
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Thus in this case every line bundle on XK is rational. In the case that X is a non-trivial Severi-

Brauer variety, this does not hold, and this produces a criterion for X being trivial or not.

20.5. Notation. Let X be a Severi-Brauer variety over k, and let K |k be a finite field extension

which splits X . Denote by ϕK an isomorphism

XK → Pn−1
K .

Furthermore let OXK (1) denote

ϕ∗(OPn−1
K

(1)).

20.6. Proposition. Let X be a Severi-Brauer variety of degree n that splits over a finite field

extension K |k. The line bundle OXK (1) is rational if and only if X is trivial.

Proof. See [23] Proposition 9.1. �

The next proposition relates the triviality of a Severi-Brauer variety with the existence of

rational points on that variety.

20.7. Proposition. A Severi-Brauer variety X over k is trivial if and only if X (k) , ∅.

Proof. See [23] Proposition 9.7. �

The main difficulty in the sections conjecture is producing a rational point from a section.

This is why the result above is central to the method presented below, since it reduces finding

a rational point to proving that a certain line bundle is rational (by showing that a certain line

bundle descends).

21. Étale sections of Brauer-Severi varieties

21.1. Theorem. Let X be a Brauer-Severi variety over a characteristic 0 field k. Let s be a

(weak) section of the structure morphism Π2(X ) → BGk that is furthermore pseudo-geometric.

Then X has a rational point.

Proof.
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21.2. Let L be a rational line bundle on X . Then there exists some n > 1 such that

L̄ ' OX̄ (n).

Consider the modulo n Chern class associated to L. This is a µn-gerbe on Xét.

21.3. Let K |k be a Galois extension that contains the n-th roots of unity and furthermore for

which we already have the isomorphism:

LK ' OXK (n).

Then the modulo n Chern class of L is a µn-gerbe on X for the sheaf of groups µn , which is

constant on XK , and thus, by Lemma 15.4, this corresponds to a morphism of GK |k -groupoids

c : Π2(XK ) → Aut(Bµn ).

21.4. Pulling back by Spec(K ) → Spec(k) gives the restriction of the µn-gerbe c to XK , and

this is represented by a morphism

cK : Π2(XK ) → Aut(Bµn )

that is over c, in the sense that the forgetful functor

F : [Π2(XK ),Aut(Bµn )]GK |k → [Π2(XK ),Aut(Bµn )]

that sends GK |k -equivariant morphisms to the underlying morphisms sends c to cK .

21.5. The µn-gerbe associated to c has a section over the étale cover XK → X given by the pair

(OXK (1),O⊗nXK
' LK ). Thus over XK it is equivalent to the trivial µn-gerbe (which is the stack

of µn-torsors represented by the class trivial class H2
ét(XK , µn )).

The trivial µn-gerbe on XK is represented by the constant (or trivial) morphism

Π2(XK ) → Aut(Bµn )
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that is, the unique up to equivalence morphism that factors as

0XK : Π2(XK ) → 1→ Aut(Bµn ).

There is therefore a homotopy between cK and 0K :

a : 0XK → cK .

However this homotopy a is (a priori) only a homotopy in [Π2(XK ),Aut(Bµn )]. That is, not a

morphism of GK |k -actions.

21.6. The goal is to show that in fact, a can be extended to a morphism of GK |k -actions, that

is, to a homotopy 0X → c. Unlike in the case of an action of a group on sets, being GK |k -

equivariant is not just a property, but also extra structure. Once this is proved, c will represent

the trivial µn-gerbe over k, and therefore the µn-gerbe c has a global section over X , which is

what we need to prove that X has a rational point.

Goal: cK is equivalent to the trivial morphism in the category of GK |k -actions.

21.7. The structure required for a to extend to an equivalence of GK |k -morphisms is as follows.

For each g in GK |k , there is an equivalence

Π2(XK )
c //

g

��

Aut(Bµn )

g

��

cg

t|
Π2(XK )

c // Aut(Bµn )

giving c the structure of a GK |k -morphism. For a : 0XK → c to be a GK |k -2-morphism, we need

for all g in GK |k the existence of some ag :



61

Π2(XK ) Aut(Bµn )

Π2(XK ) Aut(Bµn )

c
//

g

��

g

��
c //

0

%%

0

99

a ��

a
KS

cg

{�

Π2(XK ) Aut(Bµn )

Π2(XK ) Aut(Bµn )

g

��

g

��

0

%%

0

99

0g

{�

ag

*4

where 0g is the 2-morphism making 0 : Π2(XK ) → Aut(Bµn ) a morphism of GK |k -actions.

21.8. Let F be the locally constant stack (that is a µn-gerbe) on Xét that c represents. Let

FK denote the restriction of this stack to XK → X . Then g−1 ◦ c ◦ g represents g∗F, and cg

represents the canonical equivalence between g∗FK and FK . Then a represents a section of F

over XK (it represents that section which induces the equivalence of FK with Tors(µn ), namely

(OXK (1),O⊗nXK
' LK )). Thus ag represents an isomorphism of this section and its image under

the action of g:

g∗OXK → OXK .

Because Pic(XK ) ' Z and the action by the Galois group fixes the degree of a line-bundle,

we know that such isomorphisms exist, and furthermore, that when they exist the set of such

isomorphisms is a torsor under µn . The difficulty therefore lies in picking a suitable ag so that

the system (ag | g ∈ GK |k ) fits the requirements for a being GK |k -equivariant.

21.9. The assumption of the theorem provides a weak section

BGk → Π2(X ).

By lemma 14.4, this is equivalent to a section

s : BGK → Π2(XK )
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that is furthermore a morphism of GK |k -actions. The assumption that the section is pseudo-

geometric implies that the composite GK |k -morphism

BGK

s // Π2(XK )
c // Aut(Bµn )

represents the modulo n Chern class of a line bundle on k. Since all these are trivial by an

extension of Hilbert’s theorem 90, we conclude that the composite c ◦ s is equivalent to the

trivial morphism

0k : BGK → Aut(Bµn ).

Denote this homotopy by b:

b : c ◦ s → 0k .

Unlike the case for a, this 2-morphism b is a morphism of GK |k -action morphisms, and it is

because of this that we will be able to use b to “normalise” the various ag to obtain a compatible

system. In other words, we will extend a to a 2-morphism of GK |k -actions such that, when

pre-composed with s, we get b.
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21.10. Let g be an element of GK |k and consider the following diagram, where ag is a variable:

Π2(XK ) Aut(Bµn )

Π2(XK ) Aut(Bµn )

BGK

BGK

c
//

g

��

g

��
c //

s //

s
//

g

��

0

&&

0

88

a ��

a
KS

cg

v~

sg

w�

0

  

0

>>

0
��

0

KS

Π2(XK ) Aut(Bµn )

Π2(XK ) Aut(Bµn )

BGK

BGK

g

��

g

��

s //

s
//

g

��

0

&&

0

88

0g

v~

sg

w�

0

  

0

>>

0
��

0

KS

Π2(XK ) Aut(Bµn )

Π2(XK ) Aut(Bµn )

BGK

BGK

c
//

g

��

g

��
c //

s //

s
//

g

��

cg

v~

sg

w�

0

  

0

>>

0
��

0

KS

Aut(Bµn )

Aut(Bµn )

BGK

BGK

g

��

g

��

0g

v~

0

  

0

>>

sg ·ag

*4

0
�

bg

*4

0
�

In this diagram, the morphisms labelled 0 denote equivalences of morphisms with the trivial

morphism when composed with another trivial morphism.

21.11. There exists an ag such that the above diagram commutes.

Indeed for any ag , plugging it into the above diagram gives two morphisms (going opposite
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ways round the diagrams). These morphisms are of type:

BGK Aut(Bµn ).

0

&&

0

88
�#

0g

{�

0g*4

And therefore, they are equivalent to morphisms

Bµn Bµn .

id

&&

id

88��

And two such morphisms differ by an element of µn . We pick that ag (recall that they are a

torsor under µn) such that the result is 0 ∈ µn .

21.12. The end result is that ag is the unique 3-morphism (with prescribed source and target)

with the property that the diagram of 21.10 commutes.

21.13. Now that we have a candidate data for a GK |k -structure given by the system (ag | g ∈

GK |k ), we need to check that it satisfies the various requirements to make a : 0→ c a homotopy

in the category of GK |k -actions.
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21.14. Let g and h be elements of GK |k . We must check that the composite

Π2(XK ) Aut(Bµn )

Π2(XK ) Aut(Bµn )

Π2(XK ) Aut(Bµn )

g

��

g

��

h

��
h

��

c
//

c //

c //

0

%%

0

99

a ��

a
KS

cg

v~

ch

v~

Π2(XK ) Aut(Bµn )

Π2(XK ) Aut(Bµn )

Π2(XK ) Aut(Bµn )

g

��

g

��

h

��
h

��

0 //

0

%%

0

99

0g

v~

0h

v~

Π2(XK ) Aut(Bµn )

Π2(XK ) Aut(Bµn )

Π2(XK ) Aut(Bµn )

g

��

g

��

h

��
h

��

0

%%

0

99

0g

v~

ag

*4

ah

*4

0 *4

agrees with ahg . (We will be suppressing the equivalences h ◦ g → hg in these diagrams.)

However it is clear that the top square of the diagram on the next page commutes (because the

diagram in 21.10 commutes for g and h), and the bottom square commutes because b : c ◦ s → 0

is an equivalence in the category of GK |k -actions.



66

Π2(XK ) Aut(Bµn )

Π2(XK ) Aut(Bµn )

BGK

BGK

Π2(XK ) Aut(Bµn )BGK

g

��

g

��

g

��

h

��

h

��

h

��

s //

s
//

s
//

c
//

c //

c //

0

%%

0

99

a ��

a
KS

cg

v~

sg

w�

ch

v~

sh

w�

0

��

0

??

0
��

0

KS

Π2(XK ) Aut(Bµn )

Π2(XK ) Aut(Bµn )

BGK

BGK

Π2(XK ) Aut(Bµn )BGK

g

��

g

��

g

��

h

��

h

��

h

��

s //

s
//

s
//

0 //

0

%%

0

99

0g

v~

sg

w�

0h

v~

sh

w�

0

��

0
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0
��

0

KS

Π2(XK ) Aut(Bµn )

Π2(XK ) Aut(Bµn )

BGK

BGK

Π2(XK ) Aut(Bµn )BGK

g

��

g

��

g

��

h

��

h

��

h

��

s //

s
//

s
//

c
//

c //

c //

cg

v~

sg

w�

ch

v~

sh

w�

0

��

0

??

0
��

0

KS

Π2(XK ) Aut(Bµn )

Π2(XK ) Aut(Bµn )

BGK

BGK

Aut(Bµn )BGK

g

��

g

��

h

��

h

��

s //

0
//

s
//

0

%%

0

99

0g

qy

0h

qy

0

��

0

??

0
��

0

KS

Π2(XK ) Aut(Bµn )

Π2(XK ) Aut(Bµn )

BGK

BGK

hg

��

hg

��

hg

��

s //

s
//

c
//

c //

chg

v~

shg

w�

0

��

0

??

0
��

0

KS

Aut(Bµn )

Aut(Bµn )

BGK

BGK

hg

��

hg

��

0g

w�

0

��

0

??

0 
� 0
�

sg,h |cg,h 
� 0 
�

ag

*4

ah

*4

bg

*4

bh

*4

bhg

*4
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Therefore, the outer rectangle also commutes. Therefore, the parallel composition of ag and

ah has the required property (that it makes the outer-rectangle commute) of ahg .

21.15. This concludes the proof that a does indeed lift to a morphism in [BGK ,Aut(Bµn ) ×

BGK ]GK |k

/BGK
, and hence that c is equivalent to the trivial µn-gerbe over X . Thus OXK (1) is

rational, and so X has a rational point. �

22. Comparison with other work

22.1. J. Schmidt obtains a similar result to 21.1 in [22], where he uses the Étale homotopy type,

essentially equivalent to that of Artin and Mazur in [13], or Friedlander in [21]. His theorem

4.5.11 is:

22.2. Theorem. Let k be a field of characteristic 0 and X a Brauer-Severi variety over k of

period d admitting a homotopy rational point resp. a homotopy or (quasi) homology fixed point

s resp. s̄. Suppose that the class s∗ĉ1[LX ] resp. s̄∗ĉ1[LX] is divisible by d in H2(Γ; Ẑ(1)) for

[LX ] the (positive degree) generator of Pic(X ). Then X is isomorphic over k to a projective

space Pn , i.e., X admits a k-rational point.

22.3. First of all Schmidt’s result uses the full étale homotopy type, whereas Theorem 21.1 only

uses the homotopy 2-type, and a splitting of Π2(X ) → BGk is a weaker requirement than a

splitting to the full homotopy type.

22.4. Schmidt’s homotopy rational points are essentially the same as weak sections. His con-

dition on the divisibility of s∗ĉ1[LX ] by d in H2(Γ, Ẑ(1)) is also equivalent to the condition in

Theorem 21.1 that s is pseudo-geometric, that is, that the composition with the module n Chern

class of L with s is trivial.

22.5. We would like to talk about the form of both theorems from a computational point of

view. Theorem 22.2 uses the étale homotopy type, which is an object in the homotopy category

of pro-simplicial sets (or a pro-object in the category of simplicial sets).

Simplicial sets are a model for homotopy theory that have produced good results from a

theoretical point of view. In particular, they can immediately handle higher-homotopical data
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without having to elaborate on higher coherence conditions. They have been put to good use

in the theory of (∞,1)-Topoi, for example. However because simplicial sets are in essence

non-algebraic, they are a form of data that is hard to handle algorithmically.

Because 2-groupoids have well defined composition operators, one can present 2-groupoids

in much the same way one presents finitely generated groups: using 0-generators, 1-generators,

2-generators, and relations. The same methods which are used to perform computations in

current computer algebra software packages can be applied to higher-groupoids. The software

package SAGE [sage] for example can only deal with finite simplicial complexes, whereas it is

straightforward to write down the generators and relations for Bn A, where A is a finite group,

and to perform computations using the generated data.

22.6. Finally we would like to comment on the nature of the proofs. Schmidt’s proof relies

mostly on cohomological computations, which are augmented by the use of a homotopy section,

which provides maps of cohomology groups. In our setting we also get étale cohomology: the

equivalence classes of morphisms

Π2(X ) → B2µn � Gk over BGk

is in bijection with H2(X, µn ) (where B2µn � Gk is the weak quotient of Bµn by the action

of Gk ). However we prefer to deal with the morphisms directly, as we feel this more closely

resembles the geometry of the underlying problem: we are using the section s, and its structure

as a homotopy fixed point of Π2(XK ) under the action of GK |k , to normalise descent data for

the morphism that represents the Chern class. In our opinion this gives a clearer and simplified

proof of the theorem, in which in particular, the condition on s (being pseudo-geometric) seems

less arbitrary.
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Part 9. Further work

23. Locally∞-ringed∞-groupoids

In this part we discuss how the work presented here and in particular the notion of a pseudo-

geometric morphism, might fit into a larger theory. We will freely use the notion of an algebraic

notion of n-groupoids, and ∞-groupoids, leaving the foundations unspecified. One possibility

would also be to frame all of this in Homotopy type theory.

23.1. The basic structure of a scheme X , as given by Grothendieck, is an underlying topological

space Xt that is equipped with a sheaf of rings OX on Xt . Such an object is a scheme, if it is

furthermore locally an affine scheme, that is, isomorphic to Spec(A) for some ring A. This then

makes X into a locally ringed space. A morphism of schemes f : X → Y is then a morphism of

locally ringed spaces, which in particular specifies a morphism of topological spaces

f t : Xt → Yt

and a morphism of sheaves of rings

fO : OY → f t ∗OX .

23.2. There is a “theory of rings”, which can simply be defined as the opposite of the category

of finitely generated free Z-algebras. That is, the opposite R of the category:

{0} for each integer n > 0, an object Rn which is just the polynomial algebra Z[x1, ..., xn],

{1} As morphisms, the morphisms of rings.

The category R is a Lawvere theory (see Chapter 4 of [24]). It has finite products,

Rn × Rm ' Rn+m .

A model for the theory R is a product preserving functor

A : R→ Set.
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Such a functor produces an actual ring in the classical sense. The object R1 gets mapped to a set

A(R1), and for example the multiplication of the ring is given by

A(R1 × R1) ' A(R1) × A(R1) → A(R1)

the image of (the opposite of):

Z[z]→ Z[x, y]

z 7→ xy

In essence the category R encodes, without bias towards 0,1, xy, x + y, all the polynomial func-

tions that iterated products of a set should be equipped with, and how they compose with one

another.

23.3. The theory R can be used to define rings in other categories, and in particular, into higher

categories. Thus, a∞-groupoid ring is defined to be a (weak) product-preserving functor

R→ ∞Gpd.

Thus an ∞-groupoid ring is an infinity groupoid M that is equipped with addition and multi-

plication morphisms, 0 and 1 objects, but also higher morphisms that encode weaker notions of

distributivity, etc. The category of∞-groupoid rings will be denoted R(∞Gpd).

23.4. Example. Consider a field k, and an algebraic closure k̄ of k. Then k̄ is a ring, and it has

an an action by the group Gk , the absolute Galois group of k. Considering k̄ as an ∞-groupoid

that happens to be a homotopy 0-type, we have an∞-groupoid ring k̄ with an action by Gk . The

action by Gk is given by the data of a functor

ρ : BGk → ∞Gpd

such that ρ(∗) = k̄, and each g ∈ Gk , that is, each morphism g : ∗ → ∗ gets sent to the action

g : k̄ → k̄. Because the action by Gk actually preserves the ring structure, we actually have a
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functor

BGk → R(∞Gpd).

Define k̄ � Gk to be the (weak) colimit of ρ:

k̄ � Gk := lim
−−→

(ρ).

Because the action by Gk on k̄ is an action in the category of rings, the resulting ∞-groupoid

k̄ � Gk is actually an∞-groupoid ring. By the universal property of lim
−−→

(ρ), there is a morphism

k̄ � Gk → BGk .

23.5. In the example just given, we have an ∞-groupoid ring k̄ � Gk over Π1(Spec(k)) '

Π∞(Spec(k)). The sheaf of rings of the scheme Spec(k) is just k, but note that the decategori-

fication of k̄ � Gk is isomorphic to k, that is, if the colimit of k̄ under the action of Gk is taken

in sets rather than∞-groupoids, then we obtain k.

Thus the morphism

k̄ � Gk → Π∞(Spec(k))

can be seen as a more refined analogue of the sheaf of rings on the underlying topological

space of Spec(k). The underlying topological space of Spec(k), that is, the Zariski topology,

which is clearly somewhat lacking in this case (it is just a point), has been replaced by an object

representing its étale homotopy type.

23.6. We speculate that there is a way to construct a rigidified étale homotopy type Π̄∞(X ) of a

scheme, in such a way that the sheaf of rings of X can be encoded by a morphism

O∞X → Π̄∞(X ),

where O∞X is an∞-groupoid ring. The example of k̄ � Gk → BGk would then be a special case

of this, where Π̄∞(Spec(k)) ' BGk .

The original sheaf of rings would be recovered as follows. The global sections O(X ) corres-

pond to equivalence classes of sections of O∞X → Π̄∞(X ). For an étale morphism u : U → X ,
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one obtains

Π̄∞(u) : Π̄∞(U) → Π̄∞(X )

and the sections of OX over U are the equivalence classes of sections a: that make the following

diagram commute:

O∞X

��

Π̄∞(U) //

a
::

Π̄∞(X ).

Because the sections a land in an∞-groupoid ring, the set equivalence classes naturally forms a

ring.

23.7. We can check that this works for k̄ � Gk → BGk . The sections of k̄ � Gk → BGk are

homotopy fixed points of k̄ under the action of Gk , that is, elements of k. And for an étale

extension of fields Spec(K ) → Spec(k), the equivalence classes of sections a:

k̄ � Gk

��
BGK

//

a
;;

BGk .

correspond to GK -invariants, that is, elements of K .

24. The sections conjecture

24.1. The problem with a generalised sections conjecture, that is, trying to classify rational point

X (k) by equivalence classes sections of Π∞(X ) → BGk , is that too much geometry is forgot-

ten. In the case of Brauer-Severi varieties above, this can be remedied by requiring that some

geometry is preserved; this is what gives rise to the notion of a pseudo-geometric morphism in

Definition 17.3. By adding the structure of OX to Π̄∞(X ), all the geometry can be preserved.

We can define a morphism

(O∞X → Π̄∞(X )) → (O∞Y → Π̄∞(Y ))
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to ba morphism

f : Π̄∞(X ) → Π̄∞(Y )

and a morphism

ϕ : f −1O∞Y → OX .

over Π∞(X ), together with a suitable analogue for “locally ringed”.

24.2. Example. Consider the case of the affine scheme Spec(k[x]) = A1
k

over a field k. Assume

for the moment that k̄ is algebraically closed. Then we obtain

k → 1

for Spec(k) and because Π∞(A1
k
) ' 1, we have the presentation

k[x]→ 1

for A1
k
. When k is not algebraically closed, these schemes produce:

k̄ � Gk → BGk

k̄[x] � Gk → BGk

Thus the k-points of A1
k

would be computed by the equivalence classes of sections a:

k̄[x] � Gk

a //

%%

k̄ � Gk

{{
BGk .

These are equivalent to Gk -equivariant morphisms k̄[x] → k̄, and thus are fully determined by

the Gk -stable image of x, an element of k. Thus, in this case the morphisms do compute the

rational points of A1
k
.
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24.3. In this case it would be reasonable to expect that equivalence classes of such morphisms

classify exactly the morphisms of schemes. This could give a new way to attack the Grothen-

dieck sections conjecture. For an anabelian scheme X , the rational points of X would correspond

to morphisms

f : BGk → Π̄∞(X )

equipped with

ϕ : f −1OX → k̄ � Gk

over BGk . Since Anabelian varieties are homotopy 1-types, f would be simplified to a morphism

f : BGk → Π̄1(X ), which is already what is studied by the sections conjecture. The content of

the sections conjecture would then simply be that given any f , it is possible to construct such

a ϕ, and that this ϕ is furthermore uniquely determined up to equivalence. The point is that

the main difficulty in proving a sections conjecture type theorem is getting at the existence of a

point. This gives a clear technique for proving that a point exists.
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